Use of Generalized Inverse Matrices for One-Way ANOVA

For most of the course we will assume that the $\mathbf{X}^{\prime} \mathbf{X}$ matrix is nonsingular, so the least-squares solution is unique. Here we examine an approach that can be used when the $\mathbf{X}^{\prime} \mathbf{X}$ matrix is singular. Suppose that we have data from two groups, with sample sizes n_{1} and n_{2}, respectively, with total sample size $n=n_{1}+n_{2}$. We use the overparametrized model,

$$
Y_{i j}=\mu+\alpha_{j}+\epsilon_{i j}
$$

so that the model matrix \mathbf{X} has the following form:

$$
\mathbf{X}=\left[\begin{array}{ccc}
1 & 1 & 0 \\
1 & 1 & 0 \\
1 & 1 & 0 \\
\vdots & \vdots & \vdots \\
1 & 1 & 0 \\
1 & 0 & 1 \\
1 & 0 & 1 \\
1 & 0 & 1 \\
\vdots & \vdots & \vdots \\
1 & 0 & 1
\end{array}\right]
$$

and the $\mathbf{X}^{\prime} \mathbf{X}$ matrix is:

$$
\mathbf{X}^{\prime} \mathbf{X}=\left[\begin{array}{ccc}
n & n_{1} & n_{2} \\
n_{1} & n_{1} & 0 \\
n_{2} & 0 & n_{2}
\end{array}\right]
$$

which only has rank 2 .
A generalized inverse of an $m x n$ matrix \mathbf{B} is defined to be any $n x m$ matrix \mathbf{B}^{-}that satisfies

$$
\mathbf{B B}^{-} \mathbf{B}=\mathbf{B}
$$

If the model

$$
\mathbf{y}=\mathbf{X} \beta+\varepsilon
$$

has an $\mathbf{X}^{\prime} \mathbf{X}$ matrix that is singular then a generalized inverse can be used to obtain a least squares solution:

$$
\mathbf{b}=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-} \mathbf{X}^{\prime} \mathbf{y} .
$$

This solution, however, is not unique. We will discuss one way to obtain a generalized inverse and use it for the problem above.

