
Statistical Theory for Generalized Linear Models

The generalized linear model extends beyond the normal distribution to
the exponential family of distributions,

p(y; θ, φ) = exp

[
yθ − b(θ)

a(φ)
+ c(y, φ)

]
,

where p(y; θ, φ) is the pmf or pdf of Y , a(.), b(.), and c(.) are known
functions, θ = gc(µ) is the canonical parameter, and φ is the dispersion
parameter. Table 15.9 in the text lists the values of a(.), b(.), and c(.) for
several well-known distributions. The log-likelihood function for a sample is
then

logL(θ, φ;y) =
n∑
i=1

[
Yiθi − b(θi)

ai(φ)
+ c(Yi, φ)

]
.

Using the results that

E

(
∂ logL(θ, φ; y)

∂θ

)
= 0 and

E

(
∂2 logL(θ, φ; y)

∂θ2

)
+ E

(
∂ logL(θ, φ; y)

∂θ

)2
= 0

we can show that

E(Y ) = µ = b′(θ) and

V (Y ) = a(φ)b′′(θ) = a(φ)v(µ).

Maximum Likelihood Estimation
For a model with

g(µi) = ηi = β0 + β1Xi1 + β2Xi2 + · · ·+ βkXik,

we find the MLE’s by taking the derivative of each term in the sum for
l = logL(θ, φ;y) with respect to a parameter βj using the chain rule,

∂li
∂βj

=
∂li
∂θi

× dθi
dµi

× dµi
dηi

× ∂ηi
∂βj

for each j.
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We have

∂li
∂θi

=
yi − b′(θi)

ai(φ)
=
yi − µi
ai(φ)

,

dθi
dµi

=
1

∂µi/∂θi
=

1

∂b′(θi)/∂θi
=

1

b′′(θi)
=

1

v(µi)
,

∂ηi
∂βj

= xij,

leading to the estimating equations

n∑
i=1

Yi − µi
aiv(µi)

× dµi
dηi

× xij = 0.

These equations can be simplified if g(.) is the canonical link, but in most
circumstances iterative methods are required to solve for the MLE’s.
IWLS for solving for the MLE’s
Let

Zi ≡ ηi + (Yi − µi)
dηi
dµi

= ηi + (Yi − µi)g
′(µi).

Then

E(Zi) = ηi = β0 + β1Xi1 + β2Xi2 + · · ·+ βkXik, and

V (Zi) = [g
′(µi)]

2
aiv(µi).

These equations are the motivation for the iteratively (re)weighted least
squares procedure for computing the maximum likelihood estimates:
Step 1: Start with initial estimates of µ̂i and η̂i, call them µ̂i

(0) and η̂i
(0).

Step 2: For iteration l, compute the working response variable Z(l−1)i as
follows,

Z
(l−1)
i = η

(l−1)
i + (Yi − µ

(l−1)
i )g′(µ

(l−1)
i )

with weights
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W
(l−1)
i =

1[
g′(µ

(l−1)
i )

]2
aiv(µ

(l−1)
i )

.

Step 3: Calculate the weighted least squares estimate of b(l),

b(l) =
(
X′W(l−1)X

)−1
X′W(l−1)z(l−1).

Step 4: Repeat steps 2 and 3 until convergence.
For canonical links, IWLS implements a Newton-Raphson algorithm, but

more generally is equivalent to Fisher’s method of scoring.
The dispersion parameter φ is typically estimated via

φ̃ =
1

n− k − 1

n∑
i=1

(Yi − µ̂i)
2

aiv(µ̂i)
,

and the estimated asymptotic covariance matrix of b is,

V̂ (b) = φ̃ (X′WX)
−1
.

We can use the estimation approach developed above by just specifying
first and second moment relationships for Y without specifying a conditional
distribution. Viewed this way, the estimates are called quasi-likelihood esti-
mates.
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