Statistical Theory for Generalized Linear Models

The generalized linear model extends beyond the normal distribution to the exponential family of distributions,

$$p(y; \theta, \phi) = \exp\left[\frac{y\theta - b(\theta)}{a(\phi)} + c(y, \phi)\right],$$

where $p(y; \theta, \phi)$ is the pmf or pdf of Y, a(.), b(.), and c(.) are known functions, $\theta = g_c(\mu)$ is the canonical parameter, and ϕ is the dispersion parameter. Table 15.9 in the text lists the values of a(.), b(.), and c(.) for several well-known distributions. The log-likelihood function for a sample is then

$$\log L(\boldsymbol{\theta}, \phi; \mathbf{y}) = \sum_{i=1}^{n} \left[\frac{Y_i \theta_i - b(\theta_i)}{a_i(\phi)} + c(Y_i, \phi) \right]$$

Using the results that

$$E\left(\frac{\partial \log L(\theta,\phi;y)}{\partial \theta}\right) = 0 \text{ and}$$
$$E\left(\frac{\partial^2 \log L(\theta,\phi;y)}{\partial \theta^2}\right) + E\left(\frac{\partial \log L(\theta,\phi;y)}{\partial \theta}\right)^2 = 0$$

we can show that

$$E(Y) = \mu = b'(\theta)$$
 and
 $V(Y) = a(\phi)b''(\theta) = a(\phi)v(\mu)$

Maximum Likelihood Estimation

For a model with

$$g(\mu_i) = \eta_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \dots + \beta_k X_{ik},$$

we find the MLE's by taking the derivative of each term in the sum for $l = \log L(\boldsymbol{\theta}, \phi; \mathbf{y})$ with respect to a parameter β_j using the chain rule,

$$\frac{\partial l_i}{\partial \beta_j} = \frac{\partial l_i}{\partial \theta_i} \times \frac{d \theta_i}{d \mu_i} \times \frac{d \mu_i}{d \eta_i} \times \frac{\partial \eta_i}{\partial \beta_j} \text{ for each } j.$$

We have

$$\begin{split} \frac{\partial l_i}{\partial \theta_i} &= \frac{y_i - b'(\theta_i)}{a_i(\phi)} = \frac{y_i - \mu_i}{a_i(\phi)},\\ \frac{d\theta_i}{d\mu_i} &= \frac{1}{\partial \mu_i / \partial \theta_i} = \frac{1}{\partial b'(\theta_i) / \partial \theta_i} = \frac{1}{b''(\theta_i)} = \frac{1}{v(\mu_i)},\\ \frac{\partial \eta_i}{\partial \beta_j} &= x_{ij}, \end{split}$$

leading to the estimating equations

$$\sum_{i=1}^{n} \frac{Y_i - \mu_i}{a_i v(\mu_i)} \times \frac{d\mu_i}{d\eta_i} \times x_{ij} = 0.$$

These equations can be simplified if g(.) is the canonical link, but in most circumstances iterative methods are required to solve for the MLE's.

IWLS for solving for the MLE's Let

$$Z_i \equiv \eta_i + (Y_i - \mu_i) \frac{d\eta_i}{d\mu_i}$$
$$= \eta_i + (Y_i - \mu_i)g'(\mu_i).$$

Then

$$E(Z_i) = \eta_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \dots + \beta_k X_{ik}$$
, and
 $V(Z_i) = [g'(\mu_i)]^2 a_i v(\mu_i).$

These equations are the motivation for the iteratively (re)weighted least squares procedure for computing the maximum likelihood estimates:

Step 1: Start with initial estimates of $\hat{\mu}_i$ and $\hat{\eta}_i$, call them $\hat{\mu}_i^{(0)}$ and $\hat{\eta}_i^{(0)}$. Step 2: For iteration l, compute the working response variable $Z_i^{(l-1)}$ as

Step 2: For iteration l, compute the working response variable Z_i^{\times} is follows,

$$Z_i^{(l-1)} = \eta_i^{(l-1)} + (Y_i - \mu_i^{(l-1)})g'(\mu_i^{(l-1)})$$

with weights

$$W_i^{(l-1)} = \frac{1}{\left[g'(\mu_i^{(l-1)})\right]^2 a_i v(\mu_i^{(l-1)})}.$$

Step 3: Calculate the weighted least squares estimate of $\mathbf{b}^{(l)}$,

$$\mathbf{b}^{(l)} = \left(\mathbf{X}'\mathbf{W}^{(l-1)}\mathbf{X}\right)^{-1}\mathbf{X}'\mathbf{W}^{(l-1)}\mathbf{z}^{(l-1)}.$$

Step 4: Repeat steps 2 and 3 until convergence.

For canonical links, IWLS implements a Newton-Raphson algorithm, but more generally is equivalent to Fisher's method of scoring.

The dispersion parameter ϕ is typically estimated via

$$\widetilde{\phi} = \frac{1}{n-k-1} \sum_{i=1}^{n} \frac{\left(Y_i - \widehat{\mu}_i\right)^2}{a_i v(\widehat{\mu}_i)},$$

and the estimated asymptotic covariance matrix of **b** is,

$$\widehat{V}(\mathbf{b}) = \widetilde{\phi} \left(\mathbf{X}' \mathbf{W} \mathbf{X}
ight)^{-1}$$
 .

We can use the estimation approach developed above by just specifying first and second moment relationships for Y without specifying a conditional distribution. Viewed this way, the estimates are called quasi-likelihood estimates.