The Matrix-Based Approach to the General Linear Model continued further

Statistical Inference for Several Coefficients

Often we are interested in testing the significance of a subset of regression coefficients. If we have k covariates in our model, suppose we wish to test if q of them are not important. Suppose they are the first q coefficients, so we wish to test $H_{0}: \beta_{1}=\beta_{2}=\cdots=\beta_{q}=0$. We will highlight the theory for testing H_{0} based on two approaches: i) a likelihood-based and ii) least-squares-based. We have already seen that the least-squares and maximum-likelihood estimators of $\boldsymbol{\beta}$ are identical for the general linear model $\mathbf{y}=\mathbf{X} \boldsymbol{\beta}+\varepsilon$, where $E(\varepsilon)=0$ and $V(\varepsilon)=\sigma_{\varepsilon}^{2} \mathbf{I}_{n}$. It turns out that the estimators of the remaining parameters $\beta_{q+1}, \beta_{q+2}, \cdots, \beta_{k}$ when assuming that $\beta_{1}=\beta_{2}=\cdots=\beta_{q}=0$ are also identical under both the likelihood and least squares approaches. When testing H_{0} for either approach, we must estimate the remaining parameters $\beta_{q+1}, \beta_{q+2}, \cdots, \beta_{k}$ (we have called this the reduced model) under the constraint that $\beta_{1}=\beta_{2}=\cdots=\beta_{q}=0$ is true, or more generally under the constraint $\boldsymbol{L} \boldsymbol{\beta}=\mathbf{c}$, for some matrix \boldsymbol{L} of dimension $q \times k+1$ of full row rank q and a vector \mathbf{c} of dimension $q \times 1$. Taking the leastsquares approach, to minimize the quantity $(\mathbf{y}-\mathbf{X} \boldsymbol{\beta})^{\prime}(\mathbf{y}-\mathbf{X} \boldsymbol{\beta})$ under the constraint $\boldsymbol{L} \boldsymbol{\beta}=\mathbf{c}$, we can use the method of Lagrange multipliers, creating a function $S(\boldsymbol{\beta}, \boldsymbol{\lambda})=(\mathbf{y}-\mathbf{X} \boldsymbol{\beta})^{\prime}(\mathbf{y}-\mathbf{X} \boldsymbol{\beta})+\boldsymbol{\lambda}^{\prime}(\mathbf{c}-\boldsymbol{L} \boldsymbol{\beta})$ and minimizing it with respect to both $\boldsymbol{\beta}$ and $\boldsymbol{\lambda}$. The partial derivative equations are:

$$
\begin{aligned}
& \frac{\partial S(\boldsymbol{\beta}, \boldsymbol{\lambda})}{\partial \boldsymbol{\beta}}=2 \mathbf{X}^{\prime} \mathbf{X} \boldsymbol{\beta}-2 \mathbf{X}^{\prime} \mathbf{y}-\boldsymbol{L}^{\prime} \boldsymbol{\lambda} \\
& \frac{\partial S(\boldsymbol{\beta}, \boldsymbol{\lambda})}{\partial \boldsymbol{\lambda}}=\mathbf{c}-\boldsymbol{L} \boldsymbol{\beta}
\end{aligned}
$$

which we set to zero and solve. From these two equations we have, respectively,

$$
\begin{aligned}
\mathbf{b}_{0} & =\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{y}+\frac{1}{2}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \boldsymbol{L}^{\prime} \boldsymbol{\lambda}=\mathbf{b}+\frac{1}{2}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \boldsymbol{L}^{\prime} \widehat{\boldsymbol{\lambda}} \\
\mathbf{c} & =\boldsymbol{L} \mathbf{b}_{0}=\boldsymbol{L} \mathbf{b}+\frac{1}{2} \boldsymbol{L}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \boldsymbol{L}^{\prime} \widehat{\boldsymbol{\lambda}}
\end{aligned}
$$

Solving the second equation for $\widehat{\boldsymbol{\lambda}}$ we have:

$$
\widehat{\boldsymbol{\lambda}}=2\left[\boldsymbol{L}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{L}^{\prime}\right]^{-1}(\mathbf{c}-\boldsymbol{L} \mathbf{b}),
$$

and substituting back in the first equation for \mathbf{b}_{0} we have:

$$
\mathbf{b}_{0}=\mathbf{b}+\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \boldsymbol{L}^{\prime}\left[\boldsymbol{L}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \boldsymbol{L}^{\prime}\right]^{-1}(\mathbf{c}-\boldsymbol{L} \mathbf{b})
$$

Thus \mathbf{b}_{0} is both the least-squares and maximum-likelihood estimator of $\boldsymbol{\beta}$ under the constraint $\boldsymbol{L} \boldsymbol{\beta}=\mathbf{c}$.
i) The likelihood-based approach

To test $H_{0}: \beta_{1}=\beta_{2}=\cdots=\beta_{q}=0$ with this approach, we compare the maximized likelihood value under H_{0} to its unrestricted maximum value. An examination of the likelihood function $L\left(\boldsymbol{\beta}, \sigma_{\varepsilon}^{2}\right)$ taking into account the MLE for $\sigma_{\varepsilon}^{2}, \widehat{\sigma}_{\varepsilon}^{2}=\frac{(\mathbf{y}-\mathbf{X b})^{\prime}(\mathbf{y}-\mathbf{X b})}{n}$, shows that $(\mathbf{y}-\mathbf{X b})^{\prime}(\mathbf{y}-\mathbf{X b})$ cancels in the exponent, leaving the maximized value of $\max _{*} L\left(\boldsymbol{\beta}, \sigma_{\varepsilon}^{2}\right)=$ $\left(2 \pi \widehat{\sigma}_{*}^{2}\right)^{-n / 2} \exp (-n / 2)$, with $\widehat{\sigma}_{*}^{2}=\left(\mathbf{y}-\mathbf{X} \mathbf{b}_{*}\right)^{\prime}\left(\mathbf{y}-\mathbf{X} \mathbf{b}_{*}\right) / n$ where ${ }^{\prime} *^{\prime}$ indicates a particular model (either unrestricted or constrained under H_{0}). These maximized values are compared via the generalized likelihood ratio test statistic,

$$
G_{0}^{2}=-2 \ln \left(L_{0} / L_{1}\right),
$$

where L_{0} is the maximized likelihood under H_{0} and L_{1} is the maximized likelihood for the unconstrained (complete) model. It can be shown that G_{0}^{2} has an asymptotic chi-squared distribution with q degrees of freedom under H_{0}.
ii) The least-squares-based approach

To test $H_{0}: \beta_{1}=\beta_{2}=\cdots=\beta_{q}=0$ with this approach, we can calculate the reduction in regression sums of squares under H_{0}, which is equivalent to calculating the increase in error sums of squares. Again using the notation that model 0 is constrained under H_{0}, and $R S S$ and $\widehat{\mathbf{y}}_{1}$ are from the unconstrained model, we have:

$$
R S S_{0}-R S S=\left(\mathbf{y}-\widehat{\mathbf{y}}_{0}\right)^{\prime}\left(\mathbf{y}-\widehat{\mathbf{y}}_{0}\right)-\left(\mathbf{y}-\widehat{\mathbf{y}}_{1}\right)^{\prime}\left(\mathbf{y}-\widehat{\mathbf{y}}_{1}\right) .
$$

We will return to this equation later and show that the reduction in error sum of squares $R S S_{0}-R S S$ is independent of $R S S$, and the ratio of these two quadratic forms divided by their degrees of freedom leads to:

$$
F_{0}=\frac{\left(R S S_{0}-R S S\right) / q}{R S S /(n-k-1)}
$$

which is distributed as an F statistic with q and $n-k-1$ degrees of freedom. As mentioned in the text, a test for a subset of regression coefficients can also be conducted using the subvector of \mathbf{b} and its associated part of the covariance matrix $\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}$, which we denote by \mathbf{V}_{11}. Then to test $H_{0}: \boldsymbol{\beta}_{1}=\boldsymbol{\beta}_{1}^{(0)}$ we can use

$$
F_{0}=\frac{\left(\mathbf{b}_{1}-\boldsymbol{\beta}_{1}^{(0)}\right)^{\prime} \mathbf{V}_{11}^{-1}\left(\left(\mathbf{b}_{1}-\boldsymbol{\beta}_{1}^{(0)}\right)\right)}{q S_{E}^{2}}
$$

which follows an $F_{q, n-k-1}$ distribution under H_{0}.
Finally the global test $H_{0}: \beta_{1}=\beta_{2}=\cdots=\beta_{k}=0$ is considered and they present a result on the expected value of the regression sum of squares for this test. It turns out that for the global test,

$$
\begin{aligned}
E(\operatorname{RegSS}) & =E\left[\mathbf{y}^{\prime}\left(\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime}-\frac{1}{n} \mathbf{J}_{n}\right) \mathbf{y}\right] \\
& =\operatorname{tr}\left(\left(\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime}-\frac{1}{n} \mathbf{J}_{n}\right) \mathbf{I}_{n} \sigma_{\varepsilon}^{2}\right)+\mu^{\prime}\left(\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime}-\frac{1}{n} \mathbf{J}_{n}\right) \mu \\
& =k \sigma_{\varepsilon}^{2}+\left(\mathbf{X} \boldsymbol{\beta}_{\mathbf{1}}\right)^{\prime}\left(\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime}-\frac{1}{n} \mathbf{J}_{n}\right)\left(\mathbf{X} \boldsymbol{\beta}_{\mathbf{1}}\right) \\
& =k \sigma_{\varepsilon}^{2}+\boldsymbol{\beta}_{\mathbf{1}}^{\prime}\left(\mathbf{X}^{* \prime} \mathbf{X}^{*}\right) \boldsymbol{\beta}_{\mathbf{1}}
\end{aligned}
$$

where as explained in the text, \mathbf{X}^{*} is a matrix of mean-deviation regressors without an intercept column.

The General Linear Hypothesis

As was hinted in our discussion of inference for a subset of coefficients, a more general hypothesis than $H_{0}: \beta_{1}=\beta_{2}=\cdots=\beta_{q}=0$ is $\boldsymbol{L} \boldsymbol{\beta}=\mathbf{c}$, for some matrix \boldsymbol{L} of dimension $q \times k+1$ of full row rank q and a vector \mathbf{c} of dimension $q \times 1$. Since $\mathbf{L b}$ is a function of the least-squares estimator, our previous results show that it is normally distributed, with mean $\boldsymbol{L} \boldsymbol{\beta}$ and covariance matrix $V(\boldsymbol{L} \mathbf{b})=V\left(\boldsymbol{L}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{y}\right)=\boldsymbol{L}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} V(\mathbf{y}) \mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \boldsymbol{L}^{\prime}=$ $\sigma_{\varepsilon}^{2} \boldsymbol{L}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{L}^{\prime}$. Thus under $H_{0}: \boldsymbol{L} \boldsymbol{\beta}=\mathbf{c}$,

$$
(\boldsymbol{L} \mathbf{b}-\mathbf{c})^{\prime}\left[\boldsymbol{L}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{L}^{\prime}\right]^{-1}(\boldsymbol{L} \mathbf{b}-\mathbf{c}) / \sigma_{\varepsilon}^{2} \sim \chi_{q}^{2}
$$

and

$$
F_{0}=\frac{(\boldsymbol{L} \mathbf{b}-\mathbf{c})^{\prime}\left[\boldsymbol{L}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{L}^{\prime}\right]^{-1}(\mathbf{L} \mathbf{b}-\mathbf{c})}{q S_{E}^{2}}
$$

follows an F distribution with q and $n-k-1$ degrees of freedom.

