
The Matrix-Based Approach to the General Linear Model -
continued further

Statistical Inference for Several Coeffi cients
Often we are interested in testing the significance of a subset of regression

coeffi cients. If we have k covariates in our model, suppose we wish to test
if q of them are not important. Suppose they are the first q coeffi cients,
so we wish to test H0 : β1 = β2 = · · · = βq = 0. We will highlight the
theory for testing H0 based on two approaches: i) a likelihood-based and
ii) least-squares-based. We have already seen that the least-squares and
maximum-likelihood estimators of β are identical for the general linear model
y = Xβ + ε, where E(ε) = 0 and V (ε) = σ2εIn. It turns out that the
estimators of the remaining parameters βq+1, βq+2, · · · , βk when assuming
that β1 = β2 = · · · = βq = 0 are also identical under both the likelihood
and least squares approaches. When testing H0 for either approach, we must
estimate the remaining parameters βq+1, βq+2, · · · , βk (we have called this the
reduced model) under the constraint that β1 = β2 = · · · = βq = 0 is true, or
more generally under the constraint Lβ = c, for some matrix L of dimension
q x k+1 of full row rank q and a vector c of dimension q x 1. Taking the least-
squares approach, to minimize the quantity (y −Xβ)′(y −Xβ) under the
constraint Lβ = c, we can use the method of Lagrange multipliers, creating
a function S(β, λ) = (y −Xβ)′(y −Xβ) + λ′(c − Lβ) and minimizing it
with respect to both β and λ. The partial derivative equations are:

∂S(β, λ)

∂β
= 2X′Xβ−2X′y −L′λ,

∂S(β, λ)

∂λ
= c−Lβ

which we set to zero and solve. From these two equations we have,
respectively,

b0 = (X
′X)−1X′y+

1

2
(X′X)−1L′ λ = b+

1

2
(X′X)−1L′λ̂,

c=Lb0 = Lb+
1

2
L(X′X)−1L′λ̂

Solving the second equation for λ̂ we have:
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λ̂ = 2[L(X′X)−1L′]−1(c−Lb),
and substituting back in the first equation for b0 we have:

b0 = b+(X
′X)−1L′[L(X′X)−1L′]−1(c−Lb).

Thus b0 is both the least-squares and maximum-likelihood estimator of
β under the constraint Lβ = c.
i) The likelihood-based approach
To test H0 : β1 = β2 = · · · = βq = 0 with this approach, we com-

pare the maximized likelihood value under H0 to its unrestricted maximum
value. An examination of the likelihood function L(β, σ2ε) taking into ac-
count the MLE for σ2ε , σ̂

2
ε =

(y−Xb)′(y−Xb)
n

, shows that (y −Xb)′(y −Xb)
cancels in the exponent, leaving the maximized value of max∗ L(β, σ2ε) =
(2πσ̂2∗)

−n/2 exp(−n/2), with σ̂2∗ = (y −Xb∗)′(y −Xb∗)/n where ′∗′ indicates
a particular model (either unrestricted or constrained under H0). These
maximized values are compared via the generalized likelihood ratio test sta-
tistic,

G20 = −2 ln(L0/L1),
where L0 is the maximized likelihood under H0 and L1 is the maximized

likelihood for the unconstrained (complete) model. It can be shown that G20
has an asymptotic chi-squared distribution with q degrees of freedom under
H0.
ii) The least-squares-based approach
To test H0 : β1 = β2 = · · · = βq = 0 with this approach, we can calculate

the reduction in regression sums of squares under H0, which is equivalent
to calculating the increase in error sums of squares. Again using the nota-
tion that model 0 is constrained under H0, and RSS and ŷ1 are from the
unconstrained model, we have:

RSS0 −RSS = (y−ŷ0)′(y−ŷ0)− (y−ŷ1)′(y−ŷ1).
We will return to this equation later and show that the reduction in error

sum of squares RSS0 − RSS is independent of RSS, and the ratio of these
two quadratic forms divided by their degrees of freedom leads to:

F0 =
(RSS0 −RSS)/q

RSS/(n− k − 1) ,
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which is distributed as an F statistic with q and n − k − 1 degrees of
freedom. As mentioned in the text, a test for a subset of regression coeffi -
cients can also be conducted using the subvector of b and its associated part
of the covariance matrix (X′X)−1, which we denote by V11. Then to test
H0 : β1 = β

(0)
1 we can use

F0 =
(b1 − β(0)1 )′V−111 ((b1 − β

(0)
1 ))

qS2E
,

which follows an Fq,n−k−1 distribution under H0.
Finally the global test H0 : β1 = β2 = · · · = βk = 0 is considered and

they present a result on the expected value of the regression sum of squares
for this test. It turns out that for the global test,

E(RegSS) = E[y′(X(X′X)−1X′ − 1

n
Jn)y]

= tr((X(X′X)−1X′ − 1

n
Jn)Inσ

2
ε) + µ′(X(X′X)−1X′ − 1

n
Jn)µ

= kσ2ε + (Xβ1)
′(X(X′X)−1X′ − 1

n
Jn)(Xβ1)

= kσ2ε + β
′
1(X

∗′X∗)β1,

where as explained in the text,X∗ is a matrix of mean-deviation regressors
without an intercept column.
The General Linear Hypothesis
As was hinted in our discussion of inference for a subset of coeffi cients, a

more general hypothesis than H0 : β1 = β2 = · · · = βq = 0 is Lβ = c, for
some matrix L of dimension q x k+1 of full row rank q and a vector c of di-
mension q x 1. Since Lb is a function of the least-squares estimator, our pre-
vious results show that it is normally distributed, with mean Lβ and covari-
ance matrix V (Lb) = V (L(X′X)−1X′y) = L(X′X)−1X′V (y)X(X′X)−1L′ =
σ2εL(X

′X)−1L′. Thus under H0 : Lβ = c,

(Lb− c)′[L(X′X)−1L′]−1(Lb− c) /σ2ε ∼ χ2q

and

F0 =
(Lb− c)′[L(X′X)−1L′]−1(Lb− c)

qS2E
follows an F distribution with q and n− k − 1 degrees of freedom.
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