Some Matrix and Statistical Results, Part 1

Starting with Chapter 9 in the text we will cast linear models in matrix notation. The results in the text are fairly self-contained, but we will use some results that are not in the text, and it will be useful to have some results not found in our text.

Definition: The rank of a matrix, $\operatorname{rank}(A)$, is the number of linearly independent columns in the matrix.

Result 1:

i) The number of linearly independent rows of a matrix is the same as the number of linearly independent columns, hence is also equal to the rank of the matrix.
ii) For a nonzero matrix A of size $n \times p$, the rank of the matrix satisfies $1 \leq \operatorname{rank}(A) \leq \min (n, p)$.
iii) If two matrices A and B are conformable, then
$\operatorname{rank}(A B) \leq \min (\operatorname{rank}(A), \operatorname{rank}(B))$
iv) $\operatorname{rank}(A)=\operatorname{rank}\left(A A^{\prime}\right)=\operatorname{rank}\left(A^{\prime} A\right)$

Result 2: Let \mathbf{y} be a vector random variable of length n, with mean vector $E(\mathbf{y})=\boldsymbol{\mu}$ and covariance matrix $V(\mathbf{y})=\boldsymbol{\Sigma}$, and \mathbf{Y} a random matrix of size $n \mathbf{x} p$. Let \mathbf{A}, \mathbf{B}, and \mathbf{C} be matrices of constants. Then if appropriate matrices are conformable the following are true:
i) $E(\mathbf{A y})=\mathbf{A} E(\mathbf{y})=\mathbf{A} \boldsymbol{\mu}$,
ii) $V(\mathbf{A y})=\mathbf{A} \boldsymbol{\Sigma} \mathbf{A}^{\prime}$
iii) $E(\mathbf{A Y B}+\mathbf{C})=\mathbf{A} E(\mathbf{Y}) \mathbf{B}+\mathbf{C}$
iv) $E\left(\mathbf{y}^{\prime} \mathbf{A} \mathbf{y}\right)=\operatorname{trace}(\mathbf{A} \boldsymbol{\Sigma})+\boldsymbol{\mu}^{\prime} \mathbf{A} \boldsymbol{\mu}$

References

Hocking, R.R. 1996. Methods and Applications of Linear Models: Regression and the Analysis of Variance, New York: John Wiley \& Sons, Inc.

Seber, G.A.F., and Lee, A.J. 2003. Linear Regression Analysis, Second Edition, Hoboken, NJ: Wiley-Interscience.

Sen, A., and Srivastava, M. 1990. Regression Analysis: Theory, Methods, and Applications, New York: Springer-Verlag, Inc.

