Some More Matrix and Statistical Results

Definition: If \mathbf{y} is a vector random variable of length n with mean vector $E(\mathbf{y})=\mu$, covariance matrix $V(\mathbf{y})=\boldsymbol{\Sigma}$, and has a probability density function of:

$$
f(\mathbf{y})=|2 \pi \boldsymbol{\Sigma}|^{-1 / 2} \exp \left\{-\frac{1}{2}(\mathbf{y}-\boldsymbol{\mu})^{\prime} \boldsymbol{\Sigma}^{-1}(\mathbf{y}-\boldsymbol{\mu})\right\}
$$

then \mathbf{y} has a multivariate normal distribution, denoted by $\mathbf{y} \sim N_{n}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$.
Note that this is a slightly more general version than shown on page 197 of the text, since here $V(\mathbf{y})=\boldsymbol{\Sigma}$ whereas on that page they assume $V(\mathbf{y})=\sigma_{\varepsilon}^{2} \mathbf{I}_{n}$.

Result 3: Let $\mathbf{y} \sim N_{n}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, let \mathbf{C} be an $m \mathbf{x} n$ matrix, and \mathbf{d} be an $m \mathbf{x} 1$ vector. Then $\mathbf{C y}+\mathbf{d} \sim N_{m}\left(\mathbf{C} \boldsymbol{\mu}+\mathbf{d}, \mathbf{C} \boldsymbol{\Sigma} \mathbf{C}^{\prime}\right)$.

References

Hocking, R.R. 1996. Methods and Applications of Linear Models: Regression and the Analysis of Variance, New York: John Wiley \& Sons, Inc.

Seber, G.A.F., and Lee, A.J. 2003. Linear Regression Analysis, Second Edition, Hoboken, NJ: Wiley-Interscience.

Sen, A., and Srivastava, M. 1990. Regression Analysis: Theory, Methods, and Applications, New York: Springer-Verlag, Inc.

