Yet More Matrix and Statistical Results

Result 3: Let $\mathbf{y} \sim N_{n}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, let \mathbf{C} be an $m \mathbf{x} n$ matrix, and \mathbf{d} be an $m \times 1$ vector. Then $\mathbf{C y}+\mathbf{d} \sim N_{m}\left(\mathbf{C} \boldsymbol{\mu}+\mathbf{d}, \mathbf{C} \boldsymbol{\Sigma} \mathbf{C}^{\prime}\right)$.

Result 4: Suppose $\mathbf{y} \sim N_{n}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, and let $\mathbf{u}=\mathbf{A y}$ and $\mathbf{v}=\mathbf{B y}$.Then \mathbf{u} and \mathbf{v} are independent if and only if $\operatorname{Cov}(\mathbf{u}, \mathbf{v})=\mathbf{A} \boldsymbol{\Sigma} \mathbf{B}^{\prime}=\mathbf{0}$.

To prove result 4 we will prove a theorem about marginal distributions of a multivariate normal distribution using moment generating functions. Recall that the moment generating function (mgf) of a random variable, denoted by $M_{X}(t)$ is

$$
M_{X}(t)=E e^{t X}
$$

provided that the expectation exists for t in some neighborhood of 0 .
Theorem 1: Let $\mathbf{y} \sim N_{n}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, and let partition $\mathbf{y}, \boldsymbol{\mu}$, and $\boldsymbol{\Sigma}$ conformably as

$$
\mathbf{y}=\binom{\mathbf{y}_{1}}{\mathbf{y}_{2}}, \boldsymbol{\mu}=\binom{\boldsymbol{\mu}_{1}}{\boldsymbol{\mu}_{2}}, \text { and } \boldsymbol{\Sigma}=\left(\begin{array}{ll}
\boldsymbol{\Sigma}_{11} & \boldsymbol{\Sigma}_{12} \\
\boldsymbol{\Sigma}_{21} & \boldsymbol{\Sigma}_{22}
\end{array}\right)
$$

Then \mathbf{y}_{1} and \mathbf{y}_{2} are independent if and only if $\boldsymbol{\Sigma}_{12}=\mathbf{0}$.
Proof of Theorem 1: Since $\mathbf{y} \sim N_{n}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, its mgf is $\exp \left(\boldsymbol{t}^{\prime} \boldsymbol{\mu}+\frac{1}{2} \boldsymbol{t}^{\prime} \boldsymbol{\Sigma} \boldsymbol{t}\right)$. If we partition \boldsymbol{t} conformably with \mathbf{y}, then the exponent is:

$$
\boldsymbol{t}_{1}^{\prime} \boldsymbol{\mu}_{1}+\boldsymbol{t}_{2}^{\prime} \boldsymbol{\mu}_{2}+\frac{1}{2} \boldsymbol{t}_{1}^{\prime} \boldsymbol{\Sigma}_{11} \boldsymbol{t}_{1}+\frac{1}{2} \boldsymbol{t}_{2}^{\prime} \boldsymbol{\Sigma}_{22} \boldsymbol{t}_{2}+\boldsymbol{t}_{1}^{\prime} \boldsymbol{\Sigma}_{12} \boldsymbol{t}_{2}
$$

If $\boldsymbol{\Sigma}_{12}=0$ then the mgf is factorizable into separate terms involving \boldsymbol{t}_{1} and \boldsymbol{t}_{2}, implying that \mathbf{y}_{1} and \mathbf{y}_{2} are independent. Conversely, if \mathbf{y}_{1} and \mathbf{y}_{2} are independent then

$$
M\left(\mathbf{t}_{1}, \mathbf{0}\right) M\left(\mathbf{0}, \mathbf{t}_{2}\right)=M\left(\mathbf{t}_{1}, \mathbf{t}_{2}\right)
$$

Comparing this last expression to the general form above, this implies that $\boldsymbol{t}_{1}^{\prime} \boldsymbol{\Sigma}_{12} \boldsymbol{t}_{2}=0$ for all \boldsymbol{t}_{1} and \boldsymbol{t}_{2}, which implies that $\boldsymbol{\Sigma}_{12}=\mathbf{0}$.

To prove Result 4 now all we have to do is use Result $\mathbf{3}$ with $\mathbf{C}=\binom{\mathbf{A}}{\mathbf{B}}$ and apply Theorem 1.

Similar results can be shown between quadratic forms based on normally distributed random variables and between linear functions and quadratic forms:

Result 5: Suppose $\mathbf{y} \sim N_{n}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, and let $\mathbf{q}_{1}=\mathbf{y}^{\prime} \mathbf{A}_{1} \mathbf{y}$ and $\mathbf{q}_{2}=\mathbf{y}^{\prime} \mathbf{A}_{\mathbf{2}} \mathbf{y}$. Then \mathbf{q}_{1} and \mathbf{q}_{2} are independent if and only if $\mathbf{A}_{1} \boldsymbol{\Sigma} \mathbf{A}_{2}=\mathbf{0}$.

Result 6: Suppose $\mathbf{y} \sim N_{n}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, and let $\mathbf{q}=\mathbf{y}^{\prime} \mathbf{A y}$ and $\mathbf{v}=\mathbf{B y}$. Then \mathbf{q} and \mathbf{v} are independent if and only if $\mathbf{B \Sigma A}=\mathbf{0}$.

References

Hocking, R.R. 1996. Methods and Applications of Linear Models: Regression and the Analysis of Variance, New York: John Wiley \& Sons, Inc.

Seber, G.A.F., and Lee, A.J. 2003. Linear Regression Analysis, Second Edition, Hoboken, NJ: Wiley-Interscience.

