Yet More Matrix and Statistical Results

Result 3: Let $\mathbf{y} \sim N_n(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, let \mathbf{C} be an $m \mathbf{x} n$ matrix, and \mathbf{d} be an $m \mathbf{x} 1$ vector. Then $\mathbf{Cy} + \mathbf{d} \sim N_m(\mathbf{C}\boldsymbol{\mu} + \mathbf{d}, \mathbf{C}\boldsymbol{\Sigma}\mathbf{C}')$.

Result 4: Suppose $\mathbf{y} \sim N_n(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, and let $\mathbf{u} = \mathbf{A}\mathbf{y}$ and $\mathbf{v} = \mathbf{B}\mathbf{y}$. Then \mathbf{u} and \mathbf{v} are independent if and only if $\operatorname{Cov}(\mathbf{u}, \mathbf{v}) = \mathbf{A}\boldsymbol{\Sigma}\mathbf{B}' = \mathbf{0}$.

To prove result 4 we will prove a theorem about marginal distributions of a multivariate normal distribution using moment generating functions. Recall that the moment generating function (mgf) of a random variable, denoted by $M_X(t)$ is

$$M_X(t) = E e^{tX}.$$

provided that the expectation exists for t in some neighborhood of 0.

Theorem 1: Let $\mathbf{y} \sim N_n(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, and let partition $\mathbf{y}, \boldsymbol{\mu}$, and $\boldsymbol{\Sigma}$ conformably as

$$\mathbf{y} = egin{pmatrix} \mathbf{y}_1 \ \mathbf{y}_2 \end{pmatrix}, \, oldsymbol{\mu} = egin{pmatrix} oldsymbol{\mu}_1 \ oldsymbol{\mu}_2 \end{pmatrix}, \, ext{and} \, \, oldsymbol{\Sigma} = egin{pmatrix} oldsymbol{\Sigma}_{11} & oldsymbol{\Sigma}_{12} \ oldsymbol{\Sigma}_{21} & oldsymbol{\Sigma}_{22} \end{pmatrix}.$$

Then \mathbf{y}_1 and \mathbf{y}_2 are independent if and only if $\boldsymbol{\Sigma}_{12} = \mathbf{0}$.

Proof of Theorem 1: Since $\mathbf{y} \sim N_n(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, its mgf is $\exp(t'\boldsymbol{\mu} + \frac{1}{2}t'\boldsymbol{\Sigma}t)$. If we partition t conformably with \mathbf{y} , then the exponent is:

$$t_1' \mu_1 + t_2' \mu_2 + rac{1}{2} t_1' \Sigma_{11} t_1 + rac{1}{2} t_2' \Sigma_{22} t_2 + t_1' \Sigma_{12} t_2.$$

If $\Sigma_{12} = 0$ then the mgf is factorizable into separate terms involving t_1 and t_2 , implying that \mathbf{y}_1 and \mathbf{y}_2 are independent. Conversely, if \mathbf{y}_1 and \mathbf{y}_2 are independent then

$$M(\mathbf{t}_1, \mathbf{0})M(\mathbf{0}, \mathbf{t}_2) = M(\mathbf{t}_1, \mathbf{t}_2).$$

Comparing this last expression to the general form above, this implies that $t'_1 \Sigma_{12} t_2 = 0$ for all t_1 and t_2 , which implies that $\Sigma_{12} = 0$.

To prove **Result 4** now all we have to do is use **Result 3** with $C = \begin{pmatrix} A \\ B \end{pmatrix}$ and apply **Theorem 1**.

Similar results can be shown between quadratic forms based on normally distributed random variables and between linear functions and quadratic forms: **Result 5**: Suppose $\mathbf{y} \sim N_n(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, and let $\mathbf{q}_1 = \mathbf{y}' \mathbf{A}_1 \mathbf{y}$ and $\mathbf{q}_2 = \mathbf{y}' \mathbf{A}_2 \mathbf{y}$. Then \mathbf{q}_1 and \mathbf{q}_2 are independent if and only if $\mathbf{A}_1 \boldsymbol{\Sigma} \mathbf{A}_2 = \mathbf{0}$.

Result 6: Suppose $\mathbf{y} \sim N_n(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, and let $\mathbf{q} = \mathbf{y}' \mathbf{A} \mathbf{y}$ and $\mathbf{v} = \mathbf{B} \mathbf{y}$. Then \mathbf{q} and \mathbf{v} are independent if and only if $\mathbf{B} \boldsymbol{\Sigma} \mathbf{A} = \mathbf{0}$.

References

Hocking, R.R. 1996. Methods and Applications of Linear Models: Regression and the Analysis of Variance, New York: John Wiley & Sons, Inc.

Seber, G.A.F., and Lee, A.J. 2003. Linear Regression Analysis, Second Edition, Hoboken, NJ: Wiley-Interscience.