
Introduction to Mixed Models

Before introducing a mixed model, we will consider a model that we have
previously seen in ANOVA:

Yij = µi + εij, for i = 1, ..., k and j = 1, ..., ni,

where the µi terms are group means and we have the usual error assump-
tions that the εij are independent and εij ∼ N(0, σ2). For example we might
be studying the high school calculus test scores at five different schools. If
we are only interested in these five schools, then the above fixed-effects
model is appropriate.
On the other hand, if these five schools represent a random sample of

schools from a population of schools, then schools is a random effect and
our model may be written as:

Yij = µ+mi + εij, for i = 1, ..., k and j = 1, ..., ni.

Here µ is the overall mean and themi are random variables describing the
deviation from the mean. We assume that the mi and εij are independent
random variables with mi ∼ N(0, σ2m) and εij ∼ N(0, σ2). For the calculus
example above, µ is the mean of all of the test scores and mi is the random
variable giving the deviation from the mean for the ith high school. Models
that incorporate both fixed and random effect terms are calledmixed mod-
els. The model above is one simple example of a mixed model, but other
well-known mixed model examples include random coeffi cient models and
repeated measures models. In the model above the only parameters to
be estimated are µ, σ2m, and σ

2. The mi values are not parameters but real-
izations of a random variable, however it is often of interest to give predicted
values for these terms.
The Matrix Formulation of the General Linear Mixed Model
The fixed-effects model for the sample is:

y = Xβ + ε,

where the errors ε satisfy:

ε ∼N(0, σ2εI).
The mixed model for the sample can be written as:
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y = Xβ + Zu+ ε,

where Z is a design matrix for the random effects and u is the vector of
random effects. The random vectors u and ε are assumed to be independent,
and satisfy:

u ∼N(0,G) and ε ∼N(0,R).
Note that the covariance matrix of ε for the general mixed model is a

generalization of the covariance matrix for the error vector for the standard
fixed effects model above. The mixed model can be alternately expressed in
terms of either the conditional distribution of y given u:

y|u ∼N(Xβ + Zu,R)
or in terms of the marginal distribution of y:

y ∼N(Xβ,V) where V =var(y) = ZGZ′ +R.

Estimation for the General Linear Mixed Model
Estimation is typically done in two steps: first for the covariance para-

meters, then secondly for the fixed-effect parameters and random-effect pre-
dictions using the estimated covariance parameters. The two most popular
methods for estimation of the covariance parameters are maximum-likelihood
and restricted maximum-likelihood (REML). Maximum likelihood estima-
tors of the covariance parameters tend to be biased (as we have seen for σ2 in
the general linear model) with the bias becoming worse for increasing num-
bers of covariance parameters and for small samples. The REML method
was developed to address this bias problem. One way to understand the
bias of ML estimators of covariance parameters is to attribute the bias to
a failure to adjust for estimated fixed-effect parameters. Suppose that all
covariance parameters are contained in the vector θ, and that β are the fixed
effects. The likelihood function for the data will be written as L(β, θ). The
REML likelihood function is then defined as:

LR(θ) =

∫
L(β, θ) dβ.

More specifically we have

2



LR(θ) =
1√

(2π)n|V|

∫
exp[−(y −Xβ)′V−1(y −Xβ)/2] dβ,

where the matrix V is a function of the covariance parameters θ. Wood
(2006) shows that by adding Xβ̂−Xβ̂ (where β̂ = (X′V−1X)−1X′V−1y ) to
each (y −Xβ) term then expanding and simplifying leads to

LR(θ) =
exp[−(y −Xβ̂)′V−1(y −Xβ̂)/2]√

(2π)n|V|

√
(2π)p

|X′V−1X| ,

yielding a log REML likelihood function of:

lR(θ) = −
n− p
2

log(2π)−1
2
log |V|−1

2
log |X′V−1X|−1

2
(y −Xβ̂)′V−1(y −Xβ̂).

Once θ has been estimated, then the fixed-effects parameters are esti-
mated as:

β̂ = (X′V(θ̂)−1X)−1X′V(θ̂)−1y.

The random-effects terms u can be predicted by:

û= GZ′V(θ̂)−1(y −Xβ̂)
Inference for Parameters in the General Linear Mixed Model
Likelihood-ratio tests can be conducted for nested mixed models, al-

though when using REML methods the models must share the same set
of fixed-effect parameters. General linear hypotheses can be tested in a
manner analogous to that for the (fixed-effect) general linear model, but the
resulting test statistics may be only have approximate t or F distributions.
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