
Nonlinear Regression

As mentioned in the text, least squares methods are applicable to any
model that is linear in the parameters. So, for example,

Y = β0 + β1X1 + β2X2 + β3X
2
1 + β4X

2
2 + β5X1X2 + ε

can be fitted by least squares methods. Some other models such as

Yij = α
P β
i P

γ
j

Dδ
ij

εij

are nonlinear in the parameters but can be transformed into a model linear
in the parameters, often by taking logs. Some models, however, cannot be
transformed into linearity, such as

Yi =
β1

1 + exp(β2 + β3Xi)
+ εi,

and are therefore called essentially nonlinear models. A general equation
for a nonlinear model can be given by

Yi = f(β,x
′

i) + εi,

or in matrix form as

y = f(β,X) + ε.

Under the assumption of independent normal errors with mean zero and
constant variance, we can write the likelihood of the model as

L(β, σ2ε) =
1

(2πσ2ε)
n/2
exp

{
−
∑n

i=1

[
Yi − f(β,x

′
i)
]2

2σ2ε

}

=
1

(2πσ2ε)
n/2
exp

[
− 1

2σ2ε
S(β)

]
where

S(β) ≡
n∑
i=1

[
Yi − f(β,x

′

i)
]2
.
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To obtain the parameter estimates we take derivatives of S(β) giving

∂S(β)

∂β
= −2

n∑
i=1

[
Yi − f(β,x

′

i)
] ∂f(β,x′i)

∂β
.

We then set the derivatives to zero and solve to obtain the estimator b.
These estimating equations can be written in matrix form as

[F(b,X)]′ [y − f(b,X)] = 0,
where F(b,X) is the matrix of derivatives with i, jth entry

Fij =
∂f(b,x

′
i)

∂Bj

.

The solution b is the MLE of β, or if there are multiple solutions then
we select the one with the smallest value of S(β).
Solving the Estimating Equations
In general we cannot find an analytical solution to minimizing S(β), so

we use numerical methods. The text presents three methods: the steepest
descent method, the Gauss-Newton method, and the Marquardt method.
All of these methods begin with an initial starting value b(0) and then use
an updating algorithm to converge to the solution. They also all use the
gradient function d(b) = ∂S(b)/∂b. With the steepest descent method, the
updated value is

b(l+1) = b(l) −Ml d(b
(l))

where the value Ml is chosen so that S(b
(l+1)) < S(b(l)). The above

updating rule can be rewritten as

b(l+1) = b(l) +MlF
′

le
(l)

where Fl = F(b(l),X) and e(l) = y − f(b(l),X) and the constant 2 above
gets absorbed into the Ml value. The Gauss-Newton method uses a first-
order Taylor expansion of S(b) around S(b(l)) to get

b(l+1) = b(l) +Ml(F
′

lFl)
−1F

′

le
(l),

where again Ml is chosen so that S(b
(l+1)) < S(b(l)). The Marquardt

method is defined as
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b(l+1) = b(l) + (F
′

lFl +MlIp)
−1F

′

le
(l),

where M0 is a small number and continues to decrease if S(b
(l+1)) <

S(b(l)) but increases if S(b(l+1)) > S(b(l)). The Marquardt method thus is
adaptive and approaches the Gauss-Newton method whenMl gets small, but
approaches the steepest descent method when Ml gets large.
The estimated sampling covariance matrix is obtained via the maximum

likelihood approach and is

V̂ (b) = S2E
{
[F(b,X)]′ [F(b,X)]

}−1
,

where the residuals e = y − f(b,X) are used to estimate the error vari-
ance by

S2E =
e
′
e

n− p
.
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