An illustration of the relationship between VIF and PCA

As we saw in the previous lecture,

$$VIF_j = \sum_{l=1}^k \frac{A_{jl}^2}{L_l},$$

where the A_{jl} were the eigenvector coefficients and the L_l were the eigenvalues from the principal component analysis of the independent variables in a regression model. Here is an illustration of that expression. For the Canadian women's labor-force participation data, the PCA results are:

	W_1	W_2	W_3	W_4	W_5	W_6
Fertility	.385	.668	.542	.252	197	099
Men's Wages	416	.342	022	.157	.706	432
Women's Wages	420	.152	266	.729	279	.347
Consumer Debt	422	.159	098	276	619	572
Part-Time Work	395	469	.775	.152	025	018
Time	411	.411	.158	530	.047	.595
Eigenvalue	5.53	.329	.110	.0185	.0071	.0045

For the part-time work variable we have

$$VIF_{part\ time\ work} = \frac{(-.395)^2}{5.53} + \frac{(-.469)^2}{.329} + \frac{(.775)^2}{.110} + \frac{(.152)^2}{.0185} + \frac{(-.025)^2}{.0071} + \frac{(-.018)^2}{.0045}$$
$$= .0282 + .669 + 5.46 + 1.25 + .088 + .072 \approx 7.55$$

Note how the eigenvector coefficients A_{jl} are small for W_5 and W_6 which gives the part-time work variable a smaller VIF value than for other variables.