37. \(h(x) = xf(x) \)

\[
h'(x) = \frac{d}{dx} [xf(x)] \\
= xf''(x) + f(x)
\]

38. \(h(x) = (x^2 + 2x - 1)f(x) \)

\[
h'(x) = \frac{d}{dx} [(x^2 + 2x - 1)f(x)] \\
= (x^2 + 2x - 1)f'(x) + (2x + 2)f(x)
\]

61. \(f(x) = \frac{1}{x}, \ g(x) = x^3 \)

a. Using the product rule,

\[
\frac{d}{dx} \left[\left(\frac{1}{x} \right) x^3 \right] = \left(\frac{1}{x} \right) (3x^2) + x^3 (-1)x^{-2} \\
= 3x - x = 2x = \frac{d}{dx} [x^2]
\]

b. \(f'(x) = -\frac{1}{x^2} \) and \(g'(x) = 3x^2 \), so

\[
f'(x)g'(x) = -3.
\]

Now \(f(x)g(x) = \left(\frac{1}{x} \right) x^3 = x^2 \) which has derivative \(2x \).

\(f'(x)g'(x) \neq (f(x)g(x))' \).
23. a. \(f''(9) < 0 \), so \(f(x) \) is decreasing at \(x = 9 \).

b. The function \(f(x) \) is increasing for \(1 \leq x < 2 \) because the values of \(f''(x) \) are positive. The function \(f(x) \) is decreasing for \(2 < x \leq 3 \) because the values of \(f''(x) \) are negative. Therefore, \(f(x) \) has a relative maximum at \(x = 2 \). Since \(f(2) = 9 \), the coordinates of the relative maximum point are \((2, 9)\).

c. The function \(f(x) \) is decreasing for \(9 \leq x < 10 \) because the values of \(f''(x) \) are negative. The function \(f(x) \) is increasing for \(10 < x \leq 11 \) because the values of \(f''(x) \) are positive. Therefore, \(f(x) \) has a relative minimum at \(x = 10 \).

d. \(f''(2) < 0 \), so the graph is concave down.

e. \(f'''(x) = 0 \), so the inflection point is at \(x = 6 \). Since \(f(6) = 5 \), the coordinates of the inflection point are \((6, 5)\).

f. The \(x \)-coordinate where \(f'(x) = 6 \) is \(x = 15 \).
24. a. \(f(2) = 3 \)

b. \(t = 4 \) or \(t = 6 \)

c. \(f(t) \) attains its greatest value after 1 minute, \(a = 1 \). To confirm this, observe that \(f'(t) > 0 \) for \(0 \leq t < 1 \) and \(f'(t) < 0 \) for \(1 < t \leq 2 \).

d. \(f(t) \) attains its least value after 5 minutes, at \(t = 5 \). To confirm this, observe that \(f'(t) < 0 \) for \(4 \leq t < 5 \) and \(f'(t) > 0 \) for \(5 < t \leq 6 \).

e. Since \(f'(7.5) = 1 \), the rate of change is 1 unit per minute.

f. The solutions to \(f'(t) = -1 \) are \(t = 2.5 \) and \(t = 3.5 \), so \(f'(t) \) is decreasing at the rate of 1 unit per minute after 2.5 minutes and after 3.5 minutes.

g. The greatest rate of decrease occurs when \(f'(t) \) is most negative, at \(t = 3 \) (after 3 minutes).

h. The greatest rate of increase occurs when \(f'(t) \) is most positive, at \(t = 7 \) (after 7 minutes).