Generating the first T time unit of a Poisson process with rate λ

Algorithm 1

Because $P(N(t) \geq n) = P(S_n \leq t)$, where S_n is the sum of n i.i.d random variables with exponential distribution with mean $1/\lambda$, we generate S_n instead.

Step 1. Set $t = 0, n = 0$.

Step 2. Generate a random number $U \in (0, 1)$, and let $t = t + (-\frac{1}{\lambda} \log U)$. If $t > T$, stop.

Step 3. $n = n + 1, S_n = t$.

Step 4. Go to Step 2.

The final value of n represents the number of events by time T, and the values of $S(1), S(2), ..., S(n)$ are the n events time in increasing order.