Solution to HW 3

Problem 3.3

\[\mathbb{P}(X_{N(t)+1} \geq x) = \sum_{n=0}^{\infty} \mathbb{P}(X_{n+1} \geq x, N(t) = n). \]

Note that if \(n \neq 0 \), then the event \(X_{n+1} \geq x \) and the event \(N(t) = n \) are independent, we have

\[\mathbb{P}(X_{n+1} \geq x, N(t) = n) = \mathbb{P}(X_{n+1} \geq x) \cdot \mathbb{P}(N(t) = n) = \mathcal{F}(x) \mathbb{P}(N(t) = n). \]

However, if \(n = 0 \), then the event \(X_{n+1} = 0 \) and the event \(N(t) = 0 \) are not independent. In this case we have

\[\mathbb{P}(X_{1} \geq x; N(t) = 0) = \mathbb{P}(X_{1} \geq x; X_{1} > t). \]

If \(x \geq t \), then \(\mathbb{P}(X_{1} \geq x; N(t) = 0) = \mathcal{F}(x) \); if \(x < t \), then \(\mathbb{P}(X_{1} \geq x; N(t) = 0) = \mathbb{P}(N(t) = 0) \).

In any case we have \(\mathbb{P}(X_{1} \geq x; N(t) = 0) \geq \mathcal{F}(x) \mathbb{P}(N(t) = 0) \). Hence

\[\mathbb{P}(X_{N(t)+1} \geq x) \geq \sum_{n=0}^{\infty} \mathcal{F}(x) \mathbb{P}(N(t) = n) = \mathcal{F}(x). \]

When \(\mathcal{F}(x) = 1 - e^{-\lambda x} \), we have

\[\mathbb{P}(X_{N(t)+1} \geq x) = \mathbb{P}(X_{1} \geq x, N(t) = 0) + \mathcal{F}(x) - \mathbb{P}(X_{1} \geq x) \mathbb{P}(N(t) = 0) \]
\[= e^{-\lambda \max\{t,x\}} + e^{-\lambda x} - e^{-\lambda x} e^{-\lambda t}. \]

Problem 3.4

\[m(t) = \mathcal{F}(t) + \sum_{n=2}^{\infty} F_{n}(t) \]
\[= \mathcal{F}(t) + \sum_{n=2}^{\infty} \int_{0}^{t} F_{n-1}(t-x) d\mathcal{F}(x) \]
\[= \mathcal{F}(t) + \int_{0}^{t} \sum_{n=2}^{\infty} F_{n-1}(t-x) d\mathcal{F}(x) \]
\[= \mathcal{F}(t) + \int_{0}^{t} m(t-x) d\mathcal{F}(x). \]

Problem 3.5: Let

\[\phi(F)(s) = \int_{0}^{\infty} e^{ist} d\mathcal{F}(t) \]

be the characteristic function of a random variable with density \(F \). So \(\phi(F_{n}) \) is the characteristic function of \(X_{1} + X_{2} + \cdots + X_{n} \). Because \(X_{i} \) are i.i.d, we have \(\phi(F_{n}) = [\phi(F)]^{n} \). From \(m(t) = \sum_{n=1}^{\infty} F_{n}(t) \) we obtain

\[\phi(m) = \sum_{n=1}^{\infty} [\phi(F)]^{n} = \frac{\phi(F)}{1 - \phi(F)}. \]
Hence
\[\phi(F) = \frac{\phi(m)}{1 + \phi(m)}. \]

In other words, \(\phi(F) \) is uniquely determined by \(m(t) \). Because a distribution is uniquely determined by its characteristic function, so \(F \) is uniquely determined by \(m(t) \).

Note You may use moment generating function instead of the characteristic function.

Problem 3.7
When \(F \) is a uniform distribution on \((0, 1)\), we have \(F(x) = x \) and \(dF(x) = dx \) for \(0 < x < 1 \). Thus, Problem 3.4 gives
\[m(t) = t + \int_0^t m(t - x)dx. \]

By changing variable \(t - x = s \) in the integral, we obtain
\[m(t) = t + \int_0^t m(s)ds. \]

Taking derivative with respect to \(t \), we obtain
\[m'(t) = 1 + m(t). \]

Solving the differential equation with the initial condition \(m(0) = 0 \), we obtain \(m(t) = e^t - 1 \).

For the second part, let \(K(t) = \min\{k : X_1 + X_1 + \cdots X_k > t\} \). Then \(K(t) = N(t) + 1 \). Thus
\[\mathbb{E}K(1) = \mathbb{E}N(1) + 1 = m(1) + 1 = e - 1 + 1 = e. \]