Solution to HW 4

Problem 3.11.

(a) Let X_i be the number of days of travel during the i-th trial. Let N be the number of trials needed to get freedom, i.e. $N = \min\{n : X_n = 2\}$. Then N is a stop time, and $T = \sum_{i=1}^{N} X_i$.

(b) N is a geometric random variable with parameter $p = 1/3$. So, $\mathbb{E}(N) = 3$. $\mathbb{P}(X_1 = 2) = \mathbb{P}(X_1 = 4) = \mathbb{P}(X_1 = 8) = 1/3$. So, $\mathbb{E}(X_1) = 14/3$. Thus, $\mathbb{E}T = \mathbb{E}(N) \cdot \mathbb{E}(X_1) = 14$.

(c) Given $N = n$, the value of each X_i is either 4 or 8 for $1 \leq i \leq n - 1$, and $X_n = 2$. For $0 \leq k \leq n - 1$,

$$\mathbb{P}(X_1 + \cdots + X_n = 4(n - 1 + k) + 2, N = n) = \binom{n-1}{k} \left(\frac{1}{3} \right)^n.$$

$$\mathbb{P}(X_1 + X_2 + \cdots + X_N = 4(n - 1 + k) + 2|N = n) = \binom{n-1}{k} \left(\frac{1}{3} \right)^n \left(\frac{2}{3} \right)^{n-1} \frac{1}{3} = \binom{n-1}{k} 2^{-n+1}.$$

Thus,

$$\mathbb{E}(X_1 + \cdots + X_n|N = n) = \sum_{k=0}^{n-1} (4n + 4k - 2) \binom{n-1}{k} 2^{-n+1} = 6n - 4.$$

A simple way to solve (c) is to notice that for $1 \leq i \leq n - 1$, $\mathbb{P}(X_i = 4|N = n) = \mathbb{P}(X_i = 8|N = n) = 1/2$. Thus, $\mathbb{E}(X_i|N = n) = 6$. Hence

$$\mathbb{E}(X - 1 + \cdots + X_N|N = n) = \sum_{i=1}^{n-1} \mathbb{E}(X_i|N = n) + 2 = 6(n - 1) + 2 = 6n - 4.$$

(d)

$$\mathbb{E}(X_1 + \cdots + X_N) = \sum_{n=1}^{\infty} (6n - 4)\mathbb{P}(N = n) = 6 \cdot 3 - 4 = 14.$$

Problem 2.

(a). Using Excel, we see that for $\mathbb{P}(N(20) \leq 14) = 0.916541527$, while $\mathbb{P}(N(20) \leq 15) = 0.951259597$. So, the 95 percentile of $N(20)$ is 15.

(b). The 95 percentile for $N(0,1)$ is 1.645. So, using approximation we have

$$\mathbb{P} \left(N(20) < \frac{t}{\mu} + 1.645\sigma \sqrt{\frac{t}{\mu^3}} \right) \approx 0.95,$$

here $t = 20$, $\mu = 2$ and $\sigma = 2$ (for exponential random variable $\sigma = \mu$). That is,

$$\mathbb{P} (N(20) < 15.2) \approx 0.95,$$

So the estimate 95 percentile of $N(20)$ is 15.
(c). For fixed integer t, the estimate 50 percentile of $N(t)$ is always the integer part of t/ν; while the true 50 percentile of $N(t)$ is the smallest integer n such that $\mathbb{P}(N(t) \leq n) \geq 0.5$.

For $t = 1$, the estimate 50 percentile of $N(1)$ is 0, the true percentile is also 0. ($\mathbb{P}(N(1) \leq 0) = 0.6065$)

For $t = 2$, the estimate 50 percentile of $N(2)$ is 1, the true percentile is also 1. ($\mathbb{P}(N(2) \leq 0) = 0.3679, \mathbb{P}(N(2) \leq 1) = 0.7357$.)

For $t = 3$, the estimate 50 percentile of $N(2)$ is 1, the true percentile is also 1. ($\mathbb{P}(N(3) \leq 0) = 0.22313016, \mathbb{P}(N(3) \leq 1) = 0.5578254$.)

For $t = 4$, the estimate 50 percentile of $N(2)$ is 2, the true percentile is also 2. ($\mathbb{P}(N(3) \leq 0) = 0.40600585, \mathbb{P}(N(3) \leq 2) = 0.676676416$.)

It seems that the estimate is always correct.

Problem 3.12

For non-lattice case, let

$$ h(s) = \begin{cases}
1 & 0 \leq s \leq a \\
0 & s > a
\end{cases}. $$

For $t > 0$,

$$ \int_0^{t+a} h(t-s)dm(s) = \int_t^{t+a} 1dm(s) = m(t+a) - m(t). $$

Thus, by the key renewal theorem,

$$ \lim_{t \to \infty} [m(t+a) - m(t)] = \lim_{t \to \infty} \int_0^{t+a} h(t-s)dm(s) = \frac{1}{\mu} \int_0^{\infty} h(s)ds = \frac{1}{\mu} \int_0^{a} ds = \frac{a}{\mu}. $$

Note that the book contains a typo. The right hand side of the equation in the key renewal theorem should be

$$ \frac{1}{\mu} \int_0^{\infty} h(s)ds \not= \frac{1}{\mu} \int_0^{t} h(t)dt. $$

(Note: for lattice case, there is a lattice version of the key renewal theorem, which states as follows: if X_i are lattice with period 1, then for any absolute convergent series $\sum_{n=0}^{\infty} b_n$,

$$ \lim_{m \to \infty} \sum_{k=0}^{m} b_{m-k}u(k) = \frac{1}{\mu} \sum_{n=0}^{\infty} b_n, $$

where $u(k)$ is the probability that there is a renewals at k. From this you can derive lattice case of Blackwell’s theorem. Since this part is not in the book, you don’t need to Problem 3.12 in the lattice case.)