Review Problems for Test 3

1. In a branching process the number of offspring per individual has a binomial distribution with parameters 2, \(p \). Starting with a single individual, calculate
 (a) the extinction probability;
 (b) the probability that the population becomes extinct for the first time in the third generation.

 Solution: \(P_0 = (1 - p)^2, P_1 = 2p(1 - p), P_2 = p^2 \) and \(P_i = 0 \) for \(i > 2 \).
 (a) Because \(P_0 > 0 \) and \(P_1 + P_0 < 1 \), by Theorem 4.5.1. \(\pi_0 \) is the smallest positive solution of \(x = P_0 + P_1x + P_2x^2 \). That is \(x = (1 - p)^2 + 2p(1 - p)x + p^2x \). Solve the equation, we have

 \[
 \pi_0 = \begin{cases}
 1 & p < \frac{1}{2} \\
 1 - \frac{2p - 1}{p^2} & p > \frac{1}{2}
 \end{cases}.
 \]

 (b) Let \(X_n \) be the population of \(n \)-th generation. Then for the population becomes extinct for the first time in the third generation, \((X_1, X_2, X_3)\) has to be one of the following: \((1, 1, 0), (1, 2, 0), (2, 1, 0), (2, 2, 0), (2, 3, 0)\) and \((2, 4, 0)\). These are mutually exclusive events. There probability are respectively \([P_1 \cdot P_1 \cdot P_0], \ [P_1 \cdot P_2 \cdot P_0^2], \ [P_2 \cdot 2pP_1 \cdot P_0], \ [P_2 \cdot (2P_0P_2 + P_1^2) \cdot P_0^2], \ [P_2 \cdot 2P_1P_2 \cdot P_0^3]\) and \([P_2 \cdot P_2^2 \cdot P_0^6]\). Hence the probability that the population becomes extinct for the first time in the third generation the sum of all these six probabilities, which simplifies to

 \[
 \]

2. A Markov chain on the line with state 0, 1, ..., \(n \). If moves from state 0 to state 1 with probability \(1 \). If it is in state \(i \), \(1 \leq i < n \), it moves to \(i + 1 \) with probability \(p \) and move to \(i - 1 \) with probability \(1 - p \). If it is in state \(n \), it move to \(n - 1 \) with probability 1. Suppose the chain starts at 0. Find the expected number of transition it takes to visit all \(n + 1 \) states.

 Solution: After the chain enters state 1, By Gambler’s ruin problem it take expected number \(\mathbb{E}B \) (see page 188 with \(i = 1 \)) to reach either \(n \) or 0, and with probability \(\alpha \) (see page 188 with \(i = 1 \)) it enters \(n \) before returning to 0. If it comes back to 0 before entering \(n \), then process start again. Therefore the number of trials is a geometric random variable with parameter \(\alpha \) (mean \(1/\alpha \)). Hence the expected number of steps it takes to reach \(n \) is \((\mathbb{E}B + 1)/\alpha \).

3. A particle moves among \(n \) locations that are arranged in a circle (so that \(n - 1 \) and 1 are the two neighbors of \(n \)). At each step it moves one position either clockwise with probability \(p \) or counterclockwise position with probability \(1 - p \). Find the transition probabilities of the reverse chain. Is the chain time reversible?

 Solution: \(P_{i,i+1} = p \) and \(P_{i,i-1} = 1 - p \) for \(1 < i < n \), and \(P_{1,2} = p, P_{n,1} = p, P_{n,n-1} = 1 - p \). It is easy to check that \(\pi_i = 1/n \) is a stationary distribution. Thus, \(P_{ij}^* = P_{ji} \).

 The chain is time reversible if and only if \(1/1/2 \).

4. For Markov chain in Example 4.3(D) on page 182, show that it is a time reversible Markov chain.
Solution: Note that

\[P_{ij} = \mathbb{P}(X_{n+1} = j | X_n = i) = \sum_{k=0}^{i} \binom{i}{k} (1-p)^k p^{i-k} \cdot \frac{e^{-\lambda \lambda j - k}}{(j-k)!}. \]

Thus by the formula of \(\pi_i \) on page 182, it is ready to check that \(\pi_i P_{ij} = \pi_j P_{ji} \).

5. Consider the gambler’s ruin problem with \(p = 0.6 \) and \(n = 4 \). Starting in state 2. Find the
(a) the expected number of visits to state 3.
(b) the probability of ever visiting state 1.

Solution:

\[
Q = \begin{pmatrix}
0 & 0.6 & 0 \\
0.4 & 0 & 0.6 \\
0 & 0.4 & 0
\end{pmatrix}, \quad (I - Q)^{-1} = \begin{pmatrix}
1.4615 & 1.1538 & 0.6923 \\
0.7692 & 1.9231 & 1.1538 \\
0.3077 & 0.7692 & 1.4615
\end{pmatrix}.
\]

So (a) the expected number of visits to state 3 is 1.1538; (b) the probability of ever visiting state 1 is 0.7692/1.4615 = 0.5263.

6. Prove that in an irreducible Markov chain with stationary distribution \(\{\pi_i\} \), \(\pi_j \geq P_{ij}^k \pi_i \) for any \(k \geq 1 \).

Solution: If \(\{\pi\} \) is a stationary distribution, then

\[
\pi_j = \sum_l \pi_l P_{lj} = \sum_i \pi_i P_{il} P_{lj} = \sum_i \sum_l \pi_i P_{il} P_{lj} = \sum_i \pi_i P_{lj}^2 = \cdots = \sum_i \pi_i P_{ij}^k \geq \pi_1 P_{ij}^k.
\]

Note that this implies \(\mu_{jj} \leq \mu_{ii} / P_{ij}^k \).