A Characterization of Random Bloch Functions

Fuchang Gao
Department of Mathematics
University of Idaho
Moscow, Idaho 83844-1103
fuchang@uidaho.

Abstract
In this paper, we introduce a necessary and sufficient condition on the complex sequence \(\{a_n\} \), \(\sum |a_n|^2 < \infty \), so that \(\sum_{n=1}^{\infty} \pm a_n z^n \) represents a Bloch function for almost all choices of signs “\(\pm \)”, answering a question left open in [2].

AMS 1991 Subject Classifications: Primary: 30B20; secondary: 60G15.

Introduction

A Bloch function is an analytic function \(f(z) \) in the unit disk \(D = \{ z : |z| < 1 \} \), such that
\[
\sup_{z \in D} (1 - |z|^2)|f'(z)| < \infty.
\]
When equipped with the norm
\[
\| f \|_B = |f(0)| + \sup_{z \in D} (1 - |z|^2)|f'(z)|,
\]
the set of all Bloch functions forms a Banach space, called the Bloch space.
In this note, we study the random power series
\[
f_\omega(z) = \sum_{n=0}^{\infty} a_n \varepsilon_n(\omega) z^n
\]
where \(\{\varepsilon_n(\omega)\} \) is a Rademacher sequence, that is \(\varepsilon_n = \pm 1 \). In particular, we will consider the following problem raised by Anderson in [1]:

Problem Find a necessary and sufficient condition on \(\{a_n\} \), such that for Rademacher sequence \(\{\varepsilon_n(\omega)\} \), the series
\[
f_\omega(z) = \sum_{n=0}^{\infty} a_n \varepsilon_n(\omega) z^n
\]
represents a Bloch function almost surely.
For the history and the related research, see e.g. [2], [3] and [1].
The study of random series dates back at least to Paley and Zygmund (1930). For a long time, a major question was to characterize the a.s. convergence of the random Fourier series
\[\sum_{n=0}^{\infty} a_n \varepsilon_n e^{ni\theta}, \]
where \(\{a_n\} \) is a sequence of numbers satisfying \(\sum_{n=0}^{\infty} |a_n|^2 < \infty \). This question was completely solved by Marcus and Pisier ([4]). Their result will be adapted in this paper to produce the proof of the sufficient part of the following theorem.

Theorem 1 If \(\{\varepsilon_n\} \) is a Rademacher sequence, then the random power series
\[f_\omega(z) = \sum_{n=0}^{\infty} a_n \varepsilon_n(\omega) z^n \]
is a Bloch function almost surely if and only if
\[\int_0^{\infty} \overline{d_n}(e^{-t^2}) dt = O(n), \]
where \(\overline{d_n} \) is the non-decreasing rearrangement of
\[d_n(t) = \left(\sum_{k=1}^{n} k^2 |a_k|^2 |e^{2\pi k t} - 1|^2 \right)^{1/2}. \]

Here and throughout this note, the non-decreasing rearrangement of a (Lebesgue) \(m \)-measurable function \(h(t) \) on \([0, 1]\) is defined by
\[\overline{h}(s) = \sup \{ y : m(\{ t : h(t) < y \}) < s \}. \]

Marcus-Pisier

In this section, we introduce a result of Marcus and Pisier [4]. For the notational simplicity, we define \(\overline{\rho}(t) \) to be the non-decreasing rearrangement of
\[\rho(t) = \left(\sum_{n=0}^{\infty} |a_n|^2 |e^{2\pi n t} - 1|^2 \right)^{1/2}, \]
and denote
\[I := \int_0^1 \frac{\overline{\rho}(t)}{t \sqrt{-\log t}} dt. \]
The following result can be found in [4] (p.11, Th. 1.4).
Proposition 1 (Marcus-Pisier) Let \(\{\xi_n\} \) be a sequence of independent, symmetric random variables. Then there exists a constant \(K \), such that

\[
\frac{1}{K} \left(\inf_n E|\xi_n| \right) \left[\sum_{n=0}^{\infty} |a_n|^2 + 1 \right] \leq EZ \leq K \sqrt{\sup_n E|\xi_n|^2} \left[\sum_{n=0}^{\infty} |a_n|^2 + 1 \right]
\]

where

\[
Z := \sup_{0 \leq \theta < 2\pi} \left| \sum_{n=0}^{\infty} a_n e^{n\theta i} \xi_n(\omega) \right|.
\]

For our purpose, we need to improve the right inequality to the following

Proposition 2 There exists a constant \(C \), such that

\[
\left\| \sup_{0 \leq \theta < 2\pi} \sum_{n=0}^{\infty} a_n e^{n\theta i} \xi_n(\omega) \right\|_{\psi_2} \leq C \left[\sqrt{\sum_{n=0}^{\infty} |a_n|^2 + 1} \right],
\]

where the Orlicz norm \(\| \cdot \|_{\psi_2} \) is defined by the equation

\[
\|x\|_{\psi_2} := \inf \left\{ c > 0 : E \exp \left(\frac{|x|^2}{c^2} \right) = 2 \right\}.
\]

To prove Proposition 2, we need two lemmas. Lemma 1 ([6], p. 43, Theorem 2.1) is called Maurey-Pisier concentration inequality; Lemma 2 ([5], p.97) is a consequence of the contraction principle (see Lemma 3 in the next section).

Lemma 1 Let \(\{X_t\}_{t \in T} \) be a centered Gaussian processes with sample paths bounded a.s. Let \(\sigma := \sup_{t \in T} EX_t^2 \). Then

\[
P\left\{ \sup_{t \in T} X_t - E \sup_{t \in T} X_t > \lambda \right\} \leq 2 \exp \left\{ -\frac{\lambda^2}{2\sigma^2} \right\}.
\]

Lemma 2 If \(\{g_i(\omega)\} \) is a sequence of i.i.d standard normal random variables, then

\[
\left\| \sup_{0 \leq \theta < 2\pi} \sum_{n=0}^{\infty} a_n e^{n\theta i} g_n(\omega) \right\|_{\psi_2} \leq \sqrt{\frac{\pi}{2}} \sup_{0 \leq \theta < 2\pi} \left\| \sum_{n=0}^{\infty} a_n e^{n\theta i} g_n(\omega) \right\|_{\psi_2}.
\]

Proof: Let \(\{g_i(\omega)\} \) be a sequence of i.i.d standard normal random variables. Denote

\[
Y_g := \sqrt{\frac{\pi}{2}} \sup_{0 \leq \theta < 2\pi} \sum_{n=0}^{\infty} a_n e^{n\theta i} g_n(\omega)
\]

and

\[
Z_g := \sqrt{\frac{\pi}{2}} \sup_{0 \leq \theta < 2\pi} \left| \sum_{n=0}^{\infty} a_n e^{n\theta i} g_n(\omega) \right|,
\]
By the symmetry of Gaussian variables, we have

\[P\{Z_g > \lambda\} \leq 2P\{Y_g > \lambda\}. \]

Using this inequality and then applying Lemma 1 to \(Y_g\), we obtain

\[\|Z_g\|_{\psi_2} \leq 2\|Y_g\|_{\psi_2} \leq C \left(EY_g + \sqrt{\sum_{n=0}^{\infty} |a_n|^2} \right) \]

for some constant \(C\). On the other hand, by applying Proposition 1 to \(Z_g\), we have

\[EZ_g \leq K \left[\sum_{n=0}^{\infty} |a_k|^2 + I \right] \]

for some constant \(K\). The Proposition follows by invoking Lemma 2.

\[\square \]

Proof of Theorem 1

We will need the following contraction principle ([5], p. 95, Theorem 4.4).

Lemma 3 Let \(F: \mathbb{R}_+ \to \mathbb{R}_+\) be convex. For any finite sequence \((x_k)\) in a Banach space \(B\) and any real numbers \((\alpha_k)\) such that \(|\alpha_k| \leq 1\) for every \(k\), we have

\[EF\left(\left\| \sum_k \alpha_k \varepsilon_k x_k \right\|\right) \leq EF\left(\left\| \sum_k \varepsilon_k x_k \right\|\right). \]

We start with the following identity. For \(z = re^{i\theta}\),

\[(1 - |z|) |f'_\omega(z)| = (1 - |z|) \left| \sum_{n=1}^{\infty} na_n z^{n-1} \varepsilon_n \right| \]

\[= (1 - r) \left| \sum_{n=1}^{\infty} nr^{n-1} a_n e^{ni\theta} \varepsilon_n \right| \]

\[= \left| \sum_{n=1}^{\infty} \left(\sum_{k=1}^{n} k a_k e^{ki\theta} \varepsilon_k \right) r^{n-1} (1 - r)^2 \right|. \]

(i) Suppose

\[\int_0^\infty e^{-t^2} dt = O(n). \]

By changing variable, this is equivalent to

\[\int_0^1 \frac{d_n(t)}{t \sqrt{-\log t}} dt = O(n). \]
Applying Proposition 2 to the random series \(\sum_{k=0}^{n} k a_k e^{k \theta_i} \varepsilon_k \), we have
\[
\left\| \sup_{0 \leq \theta < 2\pi} \left| \sum_{k=0}^{n} k a_k e^{k \theta_i} \varepsilon_k \right| \right\|_{\psi_2} \leq C \left[\sqrt{\sum_{k=0}^{n} |a_k|^2} + \int_{0}^{\infty} \frac{\overline{d_n}(t)}{t^{\sqrt{-\log t}}} dt \right].
\]

By Chebyshev’s inequality, we deduce that
\[
\sup_{0 \leq \theta < 2\pi} \left| \sum_{k=1}^{n} k a_k e^{k \theta_i} \varepsilon_k \right| \leq n + C\left(\sqrt{\sum_{k=1}^{n} |a_k|^2} + \int_{0}^{\infty} \frac{\overline{d_n}(t)}{t^{\sqrt{-\log t}}} dt \right)
\]
\[
\leq n + C n \left(\sum_{k=1}^{n} |a_k|^2 + \int_{0}^{\infty} \frac{\overline{d_n}(t)}{t^{\sqrt{-\log t}}} dt \right)
\]
\[
\leq C'n
\]
except on a set with probability less than \(e^{-n} \). (The purpose of Proposition 2 is to produce this quantity.) Thus, with probability more than \(1 - \sum_{n=m}^{\infty} e^{-n} \), we have
\[
\sup_{z \in D} (1 - |z|) |f_{\omega}'(z)| = \sup_{0 < r < 1} \sup_{0 \leq \theta \leq 2\pi} \left| \sum_{n=1}^{\infty} r^{n-1} (1 - r)^2 \sum_{k=1}^{n} k a_k e^{k \theta_i} \varepsilon_k \right|
\]
\[
\leq C_m + \sup_{0 < r < 1} \sum_{n=m}^{\infty} r^{n-1} (1 - r)^2 \sup_{0 \leq \theta \leq 2\pi} \left| \sum_{k=1}^{n} k a_k e^{k \theta_i} \varepsilon_k \right|
\]
\[
\leq C_m + \sum_{n=m}^{\infty} r^{n-1} (1 - r)^2 C'n
\]
\[
\leq C_m + C' < \infty
\]
where \(C_m \) is a constant depending on \(m \). This implies \(f_{\omega}(z) \) is a Bloch function almost surely.

(ii) Suppose \(f_{\omega}(z) \) is a Bloch function almost surely. Then
\[
\sup_{z \in D} (1 - |z|) |f_{\omega}'(z)| < \infty.
\]

By changing variable, and applying the left inequality of Proposition 1 to the series \(\sum_{k=1}^{n} k a_k e^{k \theta_i} \varepsilon_k(\omega) \), we have
\[
\int_{0}^{\infty} \overline{d_n}(e^{-t^2}) dt = 2 \int_{0}^{1} \frac{\overline{d_n}(t)}{t^{\sqrt{-\log t}}} dt
\]
\[
\leq 2KE \sup_{\theta} \left| \sum_{k=1}^{n} k a_k e^{k \theta_i} \varepsilon_k(\omega) \right|.
\]
Consider
\[
\frac{1}{n} E \sup_{\theta} \left| \sum_{k=1}^{n} k a_k e^{k \theta_i} \varepsilon_k(\omega) \right|.
\]
Because for $k \leq n$, \(\left(1 - \frac{1}{n} \right)^k \geq \frac{1}{e} \), by the contraction principle (Lemma 3),

\[
\frac{1}{n} E \sup_{\theta} \left| \sum_{k=1}^{n} k a_k e^{k i \theta} \varepsilon_k(\omega) \right| \leq e E \sup_{\theta} \left| \sum_{k=1}^{n} k a_k e^{k i \theta} \left(1 - \frac{1}{n} \right)^k \varepsilon_k(\omega) \right|
\leq e E \sup_{\theta} \left| \sum_{k=1}^{\infty} k a_k e^{k i \theta} \left(1 - \frac{1}{n} \right)^k \varepsilon_k(\omega) \right|
\leq e E \sup_{\theta} \left| \sum_{k=1}^{\infty} k a_k (1 - r^k) e^{k i \theta} \varepsilon_k(\omega) \right|
= e E \sup_{\theta} (1 - |z|) \left| \sum_{k=1}^{\infty} k a_k z^k \varepsilon_k(\omega) \right|
< \infty,
\]

which implies that

\[
\int_{0}^{\infty} d_n(e^{-t^2})dt = O(n).
\]

Corollary 1 (see [2]) If

\[
\sqrt{\sum_{k=1}^{n} |a_k|^2 k^2} = O\left(\frac{n}{\sqrt{\log n}} \right),
\]

then $\sum_{n=0}^{\infty} a_n e_n z^n$ represents a Bloch function almost surely.

Proof:

\[
\int_{0}^{\infty} d_n(e^{-t^2})dt \leq \int_{0}^{\infty} \sqrt{\sum_{k=1}^{n} k^2 |a_k|^2} \exp(2\pi k e^{-t^2 i}) - 1^2 dt
\leq 2 \int_{0}^{\sqrt{\log n}} \sqrt{\sum_{k=1}^{n} k^2 |a_k|^2} dt + 8\pi^2 \int_{\sqrt{\log n}}^{\infty} \sqrt{\sum_{k=1}^{n} k^4 |a_k|^2 e^{-t^2}} dt
\leq 2 \sqrt{\log n} \cdot \sqrt{\sum_{k=1}^{n} k^2 |a_k|^2} + 8\pi^2 \sqrt{\sum_{k=1}^{n} k^2 |a_k|^2}
= O(n).
\]

The Corollary then follows from Theorem 1.

Remark: (i) The readers who are familiar with Marcus-Pisier’s proof of Proposition 1 (the idea of replacing a symmetric random variable ξ_n by an identically distributed random variable $\xi_n \epsilon_n$) should have noticed that Theorem 1 remains valid if ϵ_n’s are replaced by the ξ_n’s in Proposition 1. (ii) Anderson also asked the question of characterizing
random BMO functions, to which Duren had a very sharp sufficient condition. We note
that Duren’s sufficient condition can be replaced by a sharper Maurey-Pisier type con-
dition. However, the technique that we used in this paper seems not to work in finding
the necessary condition.

Acknowledgment: The author thanks Professor Ron Blei for the inspiring discussion, and
thanks the referee for the valuable comments.

Reference

1. J. M. Anderson, Random power series, Linear and complex problem book 3, I,

(1985), no. 1, 81-86.

4. M. B. Marcus and G. Pisier, Random Fourier series with applications to harmonic

5. M. Ledoux and M. Talagrand, Probability in Banach spaces. Isoperimetry and

6. R. Adler, An introduction to continuity, extrema, and related topics for gen-
eral Gaussian processes. Institute of Mathematical Statistics Lecture Notes—