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Biology	545	
Phylogenetics	

	
Laboratory	3:	Likelihood-based	Phylogenetic	Approaches	

	
This	exercise	will	cover	likelihood-based	approaches	in	phylogenetics.	These	methods	use	
information	from	the	data	and	model	of	evolution	in	order	to	estimate	a	topology.		
Likelihood-based	methods	currently	are	in	wide	use;	they	have	been	shown	to	be	cosistent	
as	long	as	an	adequate	model	of	sequence	evolution	is	selected.	The	tradeoff	is	that	
likelihood-based	methods	have	to	calculate	a	likelihood	at	each	step	of	the	analysis,	a	non-
trivial	mathematical	hurdle	that	slows	down	analysis.			

	
We	will	be	performing	two	searches,	one	using	maximum	likelihood	with	RAxML	and	IQ-
TREE,	and	another	using	Bayesian	methods	with	BEAST.		In	the	next	lab,	we	will	build	on	
these	analyses	by	comparing	topologies	and	evaluating	nodal	support.	

	
Section	1:	Maximum-Likelihood	Inference	
	
1a.	Background	
	
Maximum	likelihood	is	a	statistical	approach	developed	by	Sir	Ronald	Fisher	in	1922.		
Maximum-likelihood	inferences	proceed	by	attempting	to	find	the	parameters	with	the	
highest	likelihood;	in	phylogenetics,	we	look	to	find	the	tree	that	confers	the	highest	
probability	on	the	data	(an	alignment),	given	the	model.		This	is	the	maximum-likelihood	
estimate	of	topology.		MLEs	have	many	appealing	properties,	not	least	of	which	is	the	
property	of	statistical	consistency;	the	estimated	tree	becomes	closer	to	the	true	tree	as	the	
amount	of	data	(in	this	case,	the	number	of	characters)	approaches	infinity.	
	
Searching	for	the	ML	tree	is	analogous	to	other	hill-climbing	approaches	in	phylogenetics.		
As	discussed	in	lecture,	we	can	visualize	tree	space	as	a	landscape	with	the	vertical	axis	
representing	the	likelihood	of	the	tree.		From	any	particular	starting	point	(i.e.,	starting	
tree),	the	goal	is	to	move	up	the	landscape	to	the	global	optimum.	If	there	is	a	single	global	
optimum,	the	surface	is	said	to	be	well-behaved;	if	there	are	multiple	optima	or	a	large	
number	of	trees	with	equal	or	approximately	equal	likelihoods	(a	“ridge”),	then	the	surface	
is	described	as	poorly-behaved.	
	
1b.		Inference	using	RAxML	
	
RAxML	represents	a	rapid,	approximate	approach	for	searching	for	ML	trees.	It	has	been	
developed	and	maintained	by	Alexis	Stamatakis	and	represents	one	of	the	first	approaches	
to	explicitly	combine	optimality	criteria	in	a	single	analysis.	
	
As	we	discussed	in	lecture,	RAxML	generates	a	collection	of	starting	trees	via	parsimony	
stepwise	addition	&	many	random	addition	sequences.	It	swaps	on	each	of	these	using	lazy	
random	SPR	rearrangements	by	regrafting	only	to	branches	close	to	prune	point.	Branch	
length	optimization	is	limited	to	just	the	three	branches	closest	to	regraft	point.		
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If	you	want,	you	can	download	a	GUI	version	from	the	following	site:	
https://antonellilab.github.io/raxmlGUI/	
	
For	the	lab,	we’ll	use	the	command-line	version	on	the	cluster.	
	
We	will	use	the	same	dataset	as	last	lab,	biol545ParDat.nex.	Before	we	can	infer	our	ML	
tree,	we	first	need	to	infer	a	model	of	sequence	evolution.	We	can	do	this	in	PAUP*.	
	
Log	into	the	cluster,	load	the	PAUP	module,	and	execute	your	dataset.	Before	using	the	
AutoModel	function	in	PAUP,	we	need	to	generate	a	starting	tree.	We	can	do	this	by	
generating	a	neighbor	joining	tree	using	LogDet	distances.	
	
In	PAUP:	
	
exe biol545ParDat.nex; (Optional:	include	the	-L	[output	prefix].log	option	after	your	
exe	command	to	log	your	PAUP	console	output	to	a	file	for	later	reference)	
	
dset distance=logdet; 
nj; 
	
Now	that	we	have	a	starting	tree	stored	in	our	buffer,	we	can	use	the	AutoModel	function	in	
PAUP.	By	default,	PAUP	will	evaluate	models	of	sequence	evolution	under	both	AICc	
(corrected	Akaike	information	criterion)	and	BIC	(Bayesian	information	criterion)	and	will	
output	the	best	fit	model	under	both	criteria	(For	a	complete	list	of	options	you	can	type	
AutoModel ?).		
	
AutoModel; 	
	
In	your	automodel	output,	you	can	see	all	55	models	of	sequence	evolution	that	were	tested	
listed	in	descending	order	based	on	their	likelihood	scores.	At	the	top	of	the	lists	(and	listed	
at	the	bottom	of	the	output),	you	can	see	which	model	is	selected	by	each	criterion.	
	
Answer	question	1	in	the	assignment.	
	
We	are	now	ready	to	estimate	a	ML	tree	using	raxml.	First,	load	the	raxml	module	on	the	
cluster	by	typing	module load raxml.	We	will	perform	ML	estimation	with	100	
bootstrap	replicates.	RAxML’s	options	for	model	of	sequence	evolution	are	quite	limited,	so	
we	will	use	GTR+I+G.	
	
module load raxml 
 
raxmlHPC -s biol545ParDat.fasta -m GTRGAMMAI -p 12345 -n [name of run] 
	
RAxML	will	output	a	number	of	few	trees,	but	we	are	interested	in	our	maximum	likelihood	
tree.	This	can	be	found	in	the	“RAxML_bestTree.[name	of	run]	file	in	NEWICK	format. 
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1c.	ML	estimation	using	IQ-TREE	
As	we	discussed	in	lecture,	IQ-TREE	is	another	implementation	of	approximate	ML	tree	
estimation	that	combines	parsimony	and	likelihood.	Sit	is	seeing	increasing	usage,	largely	
because	it	has	been	packaged	with	useful	model	selection	and	hypothesis	testing	
approaches.	In	searching	tree	space,	IQ-TREE	begins	with	a	set	of	100	candidate	trees	that	
are	generated	with	a	variety	of	options;	this	may	include	a	set	of	(100)	starting	trees	via	
parsimony	stepwise	addition	with	random	addition	sequences.	Trees	are	ranked	under	ML	
and	the	20	best	are	selected;	each	in	then	subjected	to	local	NNI	swapping,	again	with	only	
neighboring	branch	lengths	reoptimized.		The	best	5	trees	are	retained,	and	one	is	selected	
at	random	for	a	random	NNI.	If	the	new	tree	is	better	than	any	of	the	5	trees	in	memory,	the	
new	tree	replaces	it.	Random	perturbations	(NNIs)	are	repeated	until	100	successive	
iterations	fail	to	find	a	better	tree.		
When	using	IQ-TREE,	you	are	able	to	specify	your	own	model	of	sequence	evolution,	or	you	
can	use	the	integrated	model	selection	tool	(Model	Finder	Plus).	IQTREE	has	very	similar	
usage	to	RAxML,	although	this	time	we	will	generating	a	consensus	tree	based	on	1000	
bootsrap	replicates.	
	
module load iq-tree 
	
iqtree2 -s biol545ParDat.fasta -m MFP –-prefix [output prefix] -B 1000 
	
Since	we	bootstrapped	our	ML	tree	in	this	analysis,	the	final	consensus	tree	can	be	found	in	
[output	prefix].contree.		
	
Answer	question	2	in	the	assignment.	
	
Make	a	new	tree	file	that	contains	both	the	RAxML	best	tree,	and	the	IQ-TREE	consensus	
tree,	and	load	these	trees	into	PAUP.	Compute	Robinson-Foulds	distances	between	your	
two	trees.	
	
cat [RAxML_bestTree file] [iqtree.contree] >> new_file.tre 
 
paup 
 
gettrees file=new_file.tre; 
 
treedist; 
 
Answer	question	3	in	the	assignment.	
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Section	2:	Bayesian	Inference	
	
2a.	Background	
	
Bayesian	inference	has	become	widely	used	in	phylogenetics.		Bayesian	methods	differ	
from	ML	methods	philosophically;	in	Bayesian	inference,	we	include	our	beliefs,	or	prior	
information	about	how	our	inference,	as	part	of	our	analysis.	Specifically,	we	use	Bayes’	
Theorem:	
	
	

	

	
Here,	the	conditional	probability	of	our	model	given	the	data	(the	posterior	probability)	is	
equal	to	the	probability	of	the	data	given	the	model	(the	likelihood),	weighted	by	the	prior	
probability	of	the	model,	and	all	this	is	divided	by	the	probability	of	the	data.		Defining	
“probability	of	the	data”	is	conceptually	difficult.		Think	of	it	as	a	distribution	composed	of	
the	probabilities	of	the	data	given	the	model	weighted	by	the	probability	of	the	tree;	to	get	
the	probability	of	data,	you	simply	integrate	over	this	distribution.	However,	it’s	not	that	
easy.		We	don’t	know	anything	about	the	shape	of	this	distribution	a	priori,	so	we	take	
samples	from	it	using	Markov	chain	Monte	Carlo	(MCMC)	techniques.	
	
We’ll	talk	more	about	MCMC	methodology	and	the	use	of	priors	in	lecture,	but	there	are	
some	terms	you	should	be	familiar	with.		We	will	take	a	sample	(point	estimate	of	
parameter	values)	every	N	generations	(one	iteration	or	step	in	the	chain)	once	the	Markov	
chain	has	reached	stationarity	(began	sampling	from	the	correct	underlying	distribution).		
Two	runs	are	said	to	have	converged	if	they	are	sampling	from	the	same	underlying	
distribution	(assessed	by	looking	at	the	mean	and	variances	of	parameter	estimates,	
marginal	probability	distributions,	deviations	of	split	frequencies,	or	MCMC	“traces”)	You	
will	learn	more	about	these	properties	later	in	the	course.	
	
Bayesian	analyses	require	prior	probabilities	to	be	placed	on	all	parameters	of	interest.		In	
molecular	phylogenetics,	we	place	priors	on	the	tree,	the	nucleotide	frequencies,	the	
categories	in	the	rate	matrix,	the	branch	lengths,	the	molecular	clock	processes,	the	relative	
and	absolute	dates	of	nodes,	etc.	–	every	parameter	which	impacts	our	analysis.	
	
Luckily,	there	are	some	pretty	good	default	priors	available	as	a	result	of	analyzing	
thousands	of	datasets.		Priors	can	also	be	uninformative,	assigning	equal	probability	to	all	
parameter	values	across	a	range,	or	unbounded,	using	distributions	with	one	or	more	tails	
that	decrease	asymptotically	to	infinity.	
	

€ 

p(θ |D) =
p(D |θ )p(θ )

p(D)
where

p(D) = p(D |θ)p(θ)dθ
Θ
∫
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2b.	Bayesian	Evolutionary	Analysis	by	Sampling	Trees	(BEAST)	
	
One	of	the	most	popular	and	well-developed	Bayesian	phylogenetics	programs	is	BEAST.	
BEAST	can	be	run	from	the	command	line	(for	long	analyses	or	simulation	studies),	but	
we’ll	do	a	run	using	the	GUI.		BEAST	requires	an	XML	file	for	input,	and	the	team	has	
developed	an	intuitive	way	to	generate	one:	BEAUti.	
	
Start	BEAUti,	and	click	on	the	“+”	icon	in	the	bottom-left	corner.		Select	the	
“Biol545ParsDat.nex”	file.		We	are	not	going	to	do	a	partitioned	analysis,	so	make	sure	that	
the	data	type,	site	model,	clock	model,	and	partition	trees	are	all	equivalent.		You	would	
change	some	of	these	if	you	wanted	to	partition	your	dataset.	The	‘Link’	and	‘Unlink’	tabs	
along	the	top	of	the	window	can	help	you	do	this.	
	
Next,	along	the	very	top	of	the	window,	select	the	tab	labeled	“Site	Model”.	We	want	to	use	
HKY	model.	Check	the	boxes	to	estimate	number	of	Gamma	categories,	and	proportion	of	
invariant	sites.	Set	base	frequencies	to	“Empirical”	
	
Under	the		“Clock	Model”	tab,	select	“Relaxed	Clock	Log	Normal”	from	the	menu,	and	check	
the	“Normalize”	box.		
	
Under	the	“Priors”	tab,	change	the	prior	to	a	“Yule	Model”.		
	
Take	a	look	at	the	“Priors”	tab.	These	settings,	and	their	associated	‘operators’,	are	the	
means	through	which	BEAST	will	propose	changes	during	its	MCMC.	Some	of	what	you	are	
seeing	is	due	to	selections	you	made	when	you	selected	your	model	of	sequence	evolution;	
the	operators	are	at	default	values	and,	in	general,	are	pretty	good.	
	
Under	the	“MCMC”	tab,	change	the	chain	length	to	5000000	(for	runtime).	Go	to	file	and	
save	the	parameters	file	somewhere	you	know,	preferably	a	new	folder,	with	a	.xml	
extension.			
	
Now,	do	the	exact	same	thing,	except	this	time	check	the	box	that	says	“Sample	from	prior	
only”.	Save	this	XML	file	under	a	different	name.	
	
Now,	open	up	the	BEAST	executable.		Select	one	of	the	two	XML	files	that	you	generated,	
uncheck	the	Beagle	library	box,	then	execute	the	run.		Do	the	same	for	the	other	file	one	
once	you’re	done.	
	
We	will	analyze	these	runs	next	week.		
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Assignment	3	
Biology	545:	Principles	of	Systematics	

	
	

Name:	________________________________________	
	
	

1.		What	model(s)	of	sequence	evolution	was/were	selected	by	AICc	and	BIC?	Are	they	the	
same?		
	
	
	
	
2.	What	model	of	sequence	evolution	was	selected	by	Model	Finder	Plus?		
	
	
	
	
3.	How	do	your	ML	tree	estimates	compare	between	RAxML	and	IQ-TREE?	
	
	
	
	
4.		Let’s	say	you	performed	a	model	selection	analysis	and	K80+I+G	was	selected	as	the	best	
fitting	model.		How	would	you	implement	this	in	BEAST?	
	
	
	
	
	
	
	
	
	


