
Problem	Set	2	
	
1)	Please	indicate	the	parameters	of	an	HKY-SSR5	model.	
	
pA(1)		pA(2)		pA(3)		pA(4)		pA(5)			
pC(1)		pC(2)		pC(3)		pC(4)		pC(5)			
pG(1)		pG(2)		pG(3)		pG(4)		pG(5)			
pT(1)		pT(2)		pT(3)		pT(4)		pT(5)			
k(1)				k(2)						k(3)						k(4)						k(5)	
	
2)	Use	the	character-by-taxon	matrix	below	to	demonstrate	why	one	should	never	
map	characters	onto	a	strict	consensus	tree.		

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	

Because	there	are	10	steps	if	one	characters	onto	the	consensus	tree	and	only	8	on	
either	of	the	MP	trees,	branch	lengths	are	biased	upwards.	

	
3)	Please	draw	a	likelihood	surface	for	two	trees	where	one	has	a	higher	joint	
likelihood	with	respect	to	pinvar	and	the	other	has	a	higher	marginal	likelihood.		

	

A	 	 0	0	0	1	0	0 

B	 	 1	0	1	0	0	0 

C	 	 0	1	0	1	1	1 

D	 	 0	1	0	1	1	1 

E	 	 1	1	1	1	1	0 



	
	
	
4)	Please	write	the	formula	for	the	AIC,	and	provide	a	simple	justification	and	its	

theoretical	justification.	
	
	

AICi	=	-2lnLi	+	2di		-		This	measures	the	fit,	via	the	likelihood	score,	and	
penalizes	for	over-parameterzation,	because	di	is	the	number	of	
parameters	in	model	i.	

	
It	also	measures	the	expected	loss	of	information	incurred	by	using	
incorrect	model	i	relative	to	using	the	unknown	true	model	(i.e.,	the	K-L	
distance).	

	 	 	 	
	
5)	What	it	the	difference	between	consistency	and	efficiency?	
	
Consistency	is	an	infinite-data	property	in	which	an	estimate	converges	to	its	true	
value	as	the	sample	size	increases.	

Efficiency	measures	the	amount	of	data	required	to	converge	to	a	good	estimate.	
	
	
	
	
	
6)	Why	should	the	GTR+CAT	model	used	in	RAxML	only	be	used	for	very	large	data	

sets?	
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FIGURE 1b presents a concern about marginalizing over all
parameters. In this example, the value of x seems to be
<10 (this region has much higher likelihood/posterior
for both trees). Tree B would be chosen by a Bayesian
analysis because it has higher posterior probability for
large values of x. It seems troubling that tree B is pre-
ferred on the basis of higher support in a clearly sub-
optimal region of parameter space. The Bayesian
approach is not really misbehaving, even if the results
seem counter-intuitive. If the data had strongly rejected
values of x >10, both trees would have had likelihoods
near zero for that region of parameter space and there
would have been no apparent problem. The example
underscores the fact that every part of the surface
affects the results, so careful consideration must be
given to the prior distribution over the entire range of
the parameter values.

When there are few parameters and a large amount of
data, the debate between marginal and joint estimation is
largely academic; the likelihood and posterior landscapes
become steep thin spires and the height of the peak is a
good predictor of the integral over the whole surface.
Marginalizing becomes increasingly helpful as the
amount of data decreases relative to the number of para-
meters (for example, when complex models are used). In
these cases, the likelihood surface resembles rolling hills,
and consideration of the substantial uncertainty in the
values of parameters is necessary. This is also a situation
in which the prior can strongly influence the analysis.

Markov chain Monte Carlo. As the previous discus-
sion indicates, Bayesian analysis involves specifying a
model and a prior distribution and then integrating
the product of these quantities over all possible para-
meter values to determine the posterior probability
for each tree. The likelihood functions for phylo-
genetic models are too complex to integrate analytically,
so Bayesian approaches rely on MCMC43,44 — a
remarkable algorithm that is used for approximating
probability distributions in a wide variety of contexts.

MCMC works by taking a series of steps that form a
conceptual chain. At each step, a new location in para-
meter space is proposed as the next link in the chain.
This proposed location is usually similar to the present
one because it is generated by the random perturbation
of a few of the parameters in the present state of the
chain. The relative posterior-probability density at the
new location is calculated. If the new location has a
higher posterior-probability density than that of the pre-
sent location of the chain, the move is accepted — the
proposed location becomes the next link in the chain
and the cycle is repeated. If the proposed location has a
lower posterior-probability density, the move will be
accepted only a proportion (p) of the time, where p is the
ratio of the posterior of the proposed location compared
with the posterior of the present location (in short, small
steps downward are accepted often, whereas big leaps
downward are discouraged). If the proposed location is
rejected, the present location is added as the next link 
in the chain (so, the last two links in the chain will be
identical) and the cycle is repeated. If the method for

FIGURE 1a presents a case in which Bayesian analysis
seems superior: tree A has a slightly higher peak, but tree
B has good support over a wide range of values of the
nuisance parameter. Marginalizing over nuisance para-
meters is preferable, because the estimation of parame-
ters is imperfect; so, it is inappropriate to treat the ML
estimates of parameters as the only points in parameter
space that matter.

If integrating out parameters is preferable, why not
marginalize over all parameters? The answer is that we
integrate out parameters by weighting them according to
their posterior probability, and this requires a prior prob-
ability in addition to the likelihood.Advocates of ML are
uncomfortable with specifying prior distributions
(which they regard as too subjective) for all parameters.
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Figure 1 | Contrast between marginal and joint estimation.
Panels a and b depict the likelihood profile for two trees versus a
hypothetical parameter x. The x axis represents some nuisance
parameter (for example, the ratio of the rate of transitions to the
rate of transversions). The y axis represents the likelihood in the
case of ML, or the posterior-probability density in a Bayesian
approach. The area under the likelihood curve for tree A is shown
in light blue, the area for tree B is shown in orange. Mauve
regions are under the curve for both trees. In both cases, jointly
estimating x and the tree favours tree A (that is, the highest peak
is blue in both cases), but marginalizing over x favours tree B
(that is, the orange area is greater than the blue area).
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This	approach	uses	a	parsimony	tree	to	estimate	the	relative	rate	of	evolution	of	
each	site	and	then	lumps	sites	into	categories	based	on	similarity	of	the	rate	
estimates.	Because	these	are	single-site	estimates	of	rates,	very	many	taxa	are	
necessary	to	have	sufficient	data	to	derive	sufficiently	accurate	estimates	of	
relative	rates.	Use	of	too	few	taxa	results	in	poor	estimates	of	site-by-site	rates	
and	therefore	inappropriate	categorization	of	sites	into	rate	classes.	

	
	

7)	Please	write	Bayes’	Theorem	for	the	posterior	distribution	of	trees.	
	

	

€ 

P(τ i |D) =
P(τ i)P(D | τ i)

P(τ i)
i=1

s

∑ P(D | τ i)


