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ABSTRACT

Phylosymbiosis refers to a congruent pattern between the similarity of microbiomes of different species and the branching
pattern of the host phylogeny. Phylosymbiosis has been detected in a variety of vertebrate and invertebrate hosts, but has
only been assessed in geographically isolated populations. We tested for phylosymbiosis in eight (sub)species of western
chipmunks with overlapping ranges and ecological niches; we used a nuclear (Acrosin) and a mitochondrial (CYTB)
phylogenetic marker because there are many instances of mitochondrial introgression in chipmunks. We predicted that
similarity among microbiomes increases with: (1) increasing host mitochondrial relatedness, (2) increasing host nuclear
genome relatedness and (3) decreasing geographic distance among hosts. We did not find statistical evidence supporting
phylosymbiosis in western chipmunks. Furthermore, in contrast to studies of other mammalian microbiomes, similarity of
chipmunk microbiomes is not predominantly determined by host species. Sampling site explained most variation in
microbiome composition, indicating an important role of local environment in shaping microbiomes. Fecal microbiomes of
chipmunks were dominated by Bacteroidetes (72.2%), followed by Firmicutes (24.5%), which is one of the highest
abundances of Bacteroidetes detected in wild mammals. Future work will need to elucidate the effects of habitat, ecology
and host genomics on chipmunk microbiomes.
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INTRODUCTION

The complex microbial communities that inhabit vertebrate
hosts—the microbiome—are involved in many aspects of host
biology. Besides digestive functions, microbiomes are involved
in immune function, hormone regulation and development—
reviewed in Cryan and O’Mahony (2011); Zeevi, Korem and Segal
(2016) and Clavijo and Flórez (2018). Microbiome traits often cor-
relate with host genetics (Benson et al. 2010; Goodrich et al. 2014;
Blekhman et al. 2015) and taxonomy (e.g. Hird et al. 2015), which
together could support a link between the process of host spe-
ciation and microbiome composition (but see Moran, Ochman
and Hammer (2019)). Such links can lead to phylosymbiosis, the
congruence between the ecological similarity of microbiomes
and the branching pattern of the host phylogeny (Brooks et al.
2016). Because inference of phylosymbiosis is one of the pat-
tern detection, phylosymbiosis is agnostic to mechanism; sig-
nificant phylosymbiosis can be the result of shared ecology or
evolutionary history and, thus, is a preliminary way to assess
the strength of the eco-evolutionary signal between hosts and
microbiomes. When phylosymbiosis is high, traits of the host
that are most similar between closely related species, or indi-
viduals (i.e. that exhibit phylogenetic signal), are assumed to
shape the microbiome. This process is also referred to as host-
filtering and has been hypothesized to result in phylosymbio-
sis (Brooks et al. 2016; Douglas and Werren 2016; Mazel et al.
2018). Mazel et al. (2018) showed that phylosymbiosis can occur
through host-filtering, and does not necessarily rely on long-
term host-microbiome co-evolution. In addition to shared traits,
vertical transmission of the microbiome could result in phy-
losymbiosis due to the direct microbial transfer between related
individuals (Moran, Ochman and Hammer 2019).

The absence of phylosymbiosis may be a signal that the
microbiome is influenced by external factors, such as rapid envi-
ronmental change, relative to evolutionary changes in the host,
or that the microbiome is influenced by traits that do not show
a phylogenetic signal. Microbiome patterns of similarity would,
therefore, not mirror the host’s phylogenetic relationships.

Phylosymbiosis has been detected across many taxa and
time scales (Brooks et al. 2016; Kohl et al. 2018; Kohl, Dearing
and Bordenstein 2018; Mazel et al. 2018; Lim and Bordenstein
2019). Even within the gastrointestinal tract, different sections
can reflect host phylogenetic divergence (Kohl, Dearing and Bor-
denstein 2018). In mammals, the American pika (Ochotona prin-
ceps) showed strong evidence for phylosymbiosis among popu-
lations inhabiting isolated mountaintops (Kohl et al. 2018). Sim-
ilarly, different species of captive-raised deer mice (Peromyscus)
were shown to carry species-specific microbiomes (Brooks et al.
2016).

The degree of phylosymbiosis in rapidly diverged wild
species with overlapping ecological niches is unknown. Chip-
munks (genus Tamias) of western North America (subgenus Neo-
tamias) are a rapid radiation, where 23 species have evolved
within the last ∼1.5–3 MY (Reid, Demboski and Sullivan 2012;
Sullivan et al. 2014). Species of western chipmunks can be widely
distributed or geographically restricted, often co-occur (e.g. 2–4
species), can exhibit overlapping morphologies (e.g. cranial mor-
phologies; Sutton and Nadler 1974) and, in many cases, repre-
sent classic examples of niche partitioning. Some species are
specialists (e.g. Tamias ruficaudus, Tamias dorsalis), whereas oth-
ers have broader niches (e.g. Tamias minimus, Tamias amoenus).

Where ranges overlap, the specialist often excludes the gener-
alist from areas where it could otherwise occur. Multiple exam-
ples of ancient (e.g. Good et al. 2008) and recent mitochondrial
introgressions (e.g. 27) also occur across the clade—summarized
in (Sullivan et al. 2014)—due to low levels of gene flow between
diverging groups.

Little is known about the chipmunk microbiome, including
the degree of phylosymbiosis. Here, we characterize the fecal
microbiomes of 46 wild caught western chipmunks, belonging to
eight subspecies. We quantify phylosymbiosis using two differ-
ent host genetic markers, acrosin and CYTB; mitochondrial hap-
lotype can affect the microbiome (Ma et al. 2014) and the discor-
dance between mitochondrial and nuclear phylogenies in west-
ern chipmunks led to the hypothesis that mitochondrial clade
may be more strongly related to the microbiome than nuclear
data. We predicted that microbiome similarity would generally
increase with: (1) increasing host mitochondrial relatedness, (2)
increasing host nuclear genome relatedness and (3) decreasing
geographic distance among hosts.

METHODS

Study species and sites

We tested for phylosymbiosis in 46 individuals belonging to 8
subspecies representing 6 species of chipmunk (genus: Tamias,
subgenus: Neotamias) collected from the wild at 15 sites in 4
states in the western United States (Fig. 1; For detailed sam-
pling information see Table S1, Supporting Information). The
subgenus Neotamias contains 23 species of chipmunk that are
predominantly found in western North America. Taxonomic
assignment of (sub)species was based on phylogenetic data, geo-
graphic distribution and morphology of the baculum (os penis).

Sample collection

During July 2016 and May–July 2017, fecal pellets were collected
directly from the lower large intestine during dissections and
placed in sterile tubes. Fecal samples were stored between −86
and −196◦C until shipped on dry ice to the University of Con-
necticut. Chipmunk specimens were deposited in the Denver
Museum of Nature & Science (DMNS), and the National Museum
of Natural History (USNM), which supplied liver tissues for host
phylogenetic analysis. Collection of chipmunks was conducted
under state scientific collection permits (Colorado: 17TR2373;
Idaho: 120318; Nevada: 396754; New Mexico: 3660). Methods
were approved by the Smithsonian Institution National Museum
of Natural History Animal Care and Use Committee (proposal no.
2017-03) and followed the guidelines of Sikes (2016).

Extraction and sequencing: microbial DNA

Total DNA was extracted from fecal pellets using the QIAamp
PowerFecal DNA Kit (Qiagen, Hilden, Germany) following man-
ufacturer’s instructions, with a final volume of 100 uL. The V4
region of 16S rRNA genes were amplified and sequenced at the
Microbial Analyses, Resources and Service (MARS) facility at the
University of Connecticut, Storrs, CT, on the Illumina MiSeq plat-
form. Quant-iT PicoGreen kit was used to quantify DNA concen-
trations. The V4 region of the 16S rRNA gene was amplified using
30 ng of extracted DNA as template. The V4 region was amplified
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Figure 1. Range maps of the chipmunk species and sampling sites investigated
in this study. Sampling site were: Moscow Mountain (1), Weitas Creek (2), Rackliff

Creek (3), Slate Creek (4), Lehmi Range (5), Lost River Range (6), Ruby Mountains
(7), Cherry Creek Range (8), Toiyabe Range (9), Redskin Creek/Colorado Trail (10),
Mosquito Range (11), San Juan Mountains (12), Jemez Mountains (13), Windsor

Creek (14) and Mills Canyon (15). All samples were collected in 2017, except for 9
samples that were collected in 2016 from Moscow Mountain, Weitas Creek and
Slate Creek in Idaho. For sample size per site, see Table S1 (Supporting Informa-
tion).

using 515F and 806R with Illumina adapters and dual barcodes
(Caporaso and Lauber 2011; Kozich et al. 2013). PCR conditions
consisted of 95◦C for 3.5 min, 30 cycles of 30 s at 95.0◦C, 30 s at
50.0◦C and 90 s at 72.0◦C, followed by final extension at 72.0◦C for
10 min. PCR products were normalized based on the concentra-
tion of DNA from 250 to 400 bp and pooled. Pooled PCR products
were cleaned using the Mag-Bind RxnPure Plus (Omega Biotek)
according to the manufacturer’s protocol, and the cleaned pool
was sequenced on the MiSeq using v4 2 × 250 base pair kit (Illu-
mina, Inc., San Diego, CA).

Extraction and sequencing: chipmunk DNA

Chipmunk host DNA was extracted from liver tissue using the
E.Z.N.A Tissue Kit (Omega Biotek, Norcross, GA). Tissue was
stored in 95% EtOH and allowed to air-dry before the extrac-
tion process to prevent interference with the protocol. DNA was
eluted in 200 uL Buffer AE and stored at −20◦C. DNA concen-
tration and quality was measured with a NanoDrop 1000 spec-
trophotometer (ThermoFisher Scientific, Wilmington, DE) and
concentrations ranged from 5 to 150 ng/uL.

With some modifications, the PCR procedure from Reid et
al. (2012) was followed to amplify acrosin (ACR) (1140 bp) and
cytochrome B (CYTB) (1117bp; Reid, Demboski and Sullivan
(2012)). PCR were performed in 25 uL reactions, as follows: 100–
200 ug of DNA, 2.5 uL 10X Taq Reaction Buffer, 1 uL 25mM MgCl2,

0.5uL 10mM dNTPs, 0.5uL 10uM forward and reverse primers,
and 0.125uL 10X Taq DNA polymerase. Amplification of CYTB
was done using the following PCR conditions: 94◦C for 60 sec; 38

cycles of 94◦C for 30 sec, 50◦C for 30 sec and 72◦C for 60 sec; with
a final elongation step of 72◦C for 6 min. For the amplification of
ACR, we used a touchdown procedure to increase PCR specificity
as follows: 2 cycles of 94◦C for 60 sec, 74–58◦C for 90 sec (down
cycling 2◦C to a final annealing temperature of 58◦C), 94◦C for 60
sec and 72◦C for 60 sec; followed immediately by: 18 cycles of
94◦C for 30 sec, 58◦C for 30 sec and 72◦C for 60 sec; with a final
elongation at 72◦C for 6 min. PCR products were assessed by gel
electrophoresis in a 1% agarose gel to check for successful ampli-
fication. All successful PCR products were cleaned with E.Z.N.A
Cycle Pure Kit (Omega Biotek, Norcross, GA) and sequenced in
both directions (Eurofin Genomics LLC, Louisville, KY). Chro-
matograms were aligned and edited using CodonCode Aligner
(CodonCode Corp., Dedham, MA). Regions of low quality were
examined by inspecting chromatograms by eye and coded using
the standard nucleotide ambiguity codes.

Microbial sequence analyses

The DADA2 pipeline in R version 3.4.3 was used to process
microbial sequence data (Callahan et al. 2016; R Development
Core Team 2018). DADA2 outputs a high-resolution amplicon
sequence variant (ASV) table, which records the number of
times each unique sequence is observed in each sample and
uses the ASVs as the operational taxonomic unit. After initial
quality assessment, sequences were trimmed to remove low
quality read areas. Upon assessment of error rates, paired-end
sequences were merged and chimeras were removed. Sequences
were assigned to taxonomy using RDP’s Naı̈ve Bayesian Classi-
fier (Wang et al. 2007) with the Silva reference database (v.132;
Quast et al. 2012). Sequences identified as chloroplast and mito-
chondrial sequences were removed from the dataset, as well
as sequences that did not align to Bacteria. The DECIPHER
package in R (Wright 2015) performed a multiple-alignment,
and the phangorn package version 2.4.0 (Schliep 2011) built
a phylogenetic tree of the microbial ASVs by constructing a
neighbor-joining tree based on a generalized time-reversible
(GTR) model with a gamma distribution. The presence and abun-
dance of potential contaminants was assessed using the ’decon-
tam’ package in R (Davis et al. 2018), which compares sequences
in the negative extraction controls to those in the samples. Con-
taminants were removed from the dataset prior to analyses.

Statistics

We rarefied our data to 23 036 seqs/sample, which was the low-
est sequence number in our samples. The rarefied dataset was
only used for alpha diversity measures, and all other analyses
were performed on non-rarefied data. We calculated richness
(observed number of ASVs) and alpha diversity (Shannon diver-
sity index; Shannon and Weaver 1949) of samples using the ’phy-
loseq’ package (McMurdie and Holmes 2013). Because DADA2
removes all singletons from the dataset, diversity estimates are
likely biased downwards, as some singletons may represent real,
rare microorganisms. Our estimates are comparable within this
single dataset, and we note that comparisons of our findings
to other results not analyzed with DADA2 should be done with
caution. We used Analysis of Variance (ANOVA) to assess dif-
ferences in richness and Shannon diversity index among chip-
munk species and sampling sites. To determine which vari-
ables (state, sampling site, species, subspecies, CYTB clade) con-
tributed most to the variation detected in chipmunk fecal micro-
biomes, we conducted a PerMANOVA using the adonis2 func-
tion with by=‘margin’ in the ’vegan’ package in R (Oksanen et al.
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Table 1. Normalized RF scores comparing three distance matrices from chipmunk gut microbiome communities against acrosin (ACR) and
CYTB phylogenetic trees derived from the same individuals.

ACR CYTB Species tree

Individual Subspecies Individual Subspecies

Bray–Curtis 0.94 (P > 0.9) 1 (P = 1) 1 (P = 1) 1 (P = 1) 0.83 (P > 0.9)
Unweighted UniFrac 1 (P = 1) 1 (P = 1) 0.96 (P > 0.9) 1 (P = 1) 1 (P = 1)
Weighted UniFrac 1 (P = 1) 1 (P = 1) 1 (P = 1) 1 (P = 1) 1 (P = 1)

2018). Non-metric multidimensional scaling (NMDS) plots were
constructed for Bray–Curtis and UniFrac distances, and homo-
geneity of variance was assessed using the betadisper function
from the ’vegan’ package.

We compared relative abundances of phyla and classes
among chipmunk (sub)species and sampling sites. In addition,
we compared the average chipmunk microbiome composition
to the average microbiome composition of six other mammal
species previously described in literature.

Phylogenetic sequence analyses

We conducted separate phylogenetic analyses of ACR and CYTB
because of observed mitochondrial introgression via hybridiza-
tion that has been shown to produce signatures of gene tree
discordance (Hird and Sullivan 2009; Reid, Demboski and Sul-
livan 2012; Sullivan et al. 2014; Sarver et al. 2017). For each locus,
models of sequence evolution were evaluated in PAUP∗4.0b
using decision theory (DT) (Swofford 2002; Minin et al. 2003).
The best models of sequence evolution for CYTB and ACR
were HKY85+I+G and K81uf, respectively. The models were
implemented into Garli for ML phylogenetic inference (Zwickl
2006). Garli runs were terminated after a minimum of 30
000 generations without significant topological improvement.
We also performed 100 bootstrap replicates to assess nodal
support.

Phylosymbiosis

First, we created dendrograms of individual microbiome relat-
edness for all chipmunk host samples that were successfully
sequenced for ACR and CYTB. For subspecies-level analyses, we
divided CYTB trees into clades based on tip placement and previ-
ous studies (Hird and Sullivan 2009; Reid, Demboski and Sullivan
2012; Sarver et al. 2017). Per gene, we created three microbiome
dendrograms based on three distance metrics: unweighted and
weighted UniFrac (Lozupone and Knight 2005), and Bray–Curtis
(Bray and Curtis 1957; calculated using packages ’phyloseq’ and
’phangorn’). We created UPGMA trees for the microbiome data
using the ’phangorn’ package version 2.4.0, following Brooks et
al. (2016). We transformed trees to binary by randomly bifurcat-
ing zero length branches using the multi2di function in the ’ape’
package (Paradis, Claude and Strimmer 2004). The microbiome
dendrograms were statistically compared to the chipmunk trees
using the Robinson–Foulds (RF) distance (Robinson and Foulds
1981), using the ’phangorn’ package. We normalized RF dis-
tances by the total number of nodes. Normalized RF distances
of 0 show complete congruence of tree topology, while a dis-
tance of 1 represents no shared nodes. Significance was assessed
by randomly shuffling the tip labels of the microbiome dendro-
gram 1000 times and recalculating the RF distance between the
randomized microbiome dendrogram and the chipmunk tree.

Microbiome dendrograms and host phylogenies were created at
both the individual level and the subspecies level. In addition
to the RF index, we calculated correlation between phylogenetic
and microbiome matrices using the Mantel test in the ade4 pack-
age (Dray and Dufour 2007).

For subspecies level microbiome analyses, ASV counts were
averaged over all individuals within a subspecies. A species tree
topology was created for the focal subspecies by pruning the
species tree from Reid et al. (2012), that was estimated using
BEAST (Heled and Drummond 2010). Host-microbiome ‘tangle-
grams’ were constructed using the ’tanglegram’ function in the
’dendextend’ package (v1.8.0; Galili 2015)

Data availability

Sequence data and metadata files are available at Figshare,
project number 10.6084/m9.figshare.6905324 (Https://figshare.co
m/articles/Chipmunk phylosymbiosis/6905324) and NCBI SRA
(Accession: PRJNA574130). DMNS and MSB museum specimen
records for chipmunk hosts are available at Arctos: http://arctos
.database.museum/SpecimenSearch.cfm. R code is available at
https://github.com/KCGrond/chipmunk R code.git.

RESULTS

We obtained a total of 4 814 744 raw (microbiome) sequences. We
removed chimeras and non-target sequences and continued our
analyses with 3 166 367 high quality sequences after QC (68834.1
± 7677.6SE seqs/sample; range: 15 630–199 753 seqs/sample).
Using the ’decontam’ package in R, we detected one potential
contaminant out of 2354 ASVs, which was removed from our
dataset.

Phylosymbiosis

Normalized RF scores ranged from 0.94 to 1, depending on
phylogenetic marker used and whether trees were compared
on an individual or subspecies level (Table 1). There was no
phylosymbiosis detected (Permutational test: P = 1.00) on an
individual or subspecies level for any of the three distance
metrics tested (Table 1, Fig. 2). In addition, we did not detect
any significant relationship between fecal microbiome simi-
larity and geographical distance among sampling sites (Man-
tel test: r = 0.028, P = 0.978; Figure S1, Supporting Infor-
mation). Comparison of ACR and CYTB had a normalized RF
score of 0.5, which indicates that 50% of nodes matched (Fig.
S2, Supporting Information); this is to be expected given the
rampant mtDNA introgression documented from these taxa
(summarized in Sullivan et al. (2014)). Results from the Man-
tel test were congruent in significance with the RF test for
ACR/CYTB–microbiome comparisons (Bray: P = 0.102–0.259;
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Figure 2. Bray–Curtis distance matrix trees of the chipmunk microbiome plotted against phylogenetic trees of (A) individual level ACR, (B) subspecies level ACR, (C)
species tree, (D) individual level CYTB and (E) clade level CYTB. Clades shown in figure E are identified in figure D.

unweighted UniFrac: P = 0.549–0.998; weighted UniFrac: P =
0.832–0.998).

Alpha diversity

We detected a total of 2354 unique ASVs, resulting in an aver-
age of 163.8 ± 9.9SE ASVs per sample (range: 73–313). ASVs were
assigned to 156 genera in 15 phyla. We did not detect any statis-
tical differences in richness and alpha diversity among species
(richness F7,28 = 0.353, P = 0.921; alpha diversity F7,28 = 0.639, P
= 0.72; Figure S3, Supporting Information).

Community composition

A majority of sequences obtained from chipmunk feces
belonged to the phyla Bacteroidetes (72.2%), Firmicutes (24.5%)
and Proteobacteria (2.4%; Fig. 3A; Figure S4, Supporting Infor-
mation). Within the Bacteroidetes phylum, 76.5% of sequences
belonged to the genera Prevotellaceae UCG-001 and Bacteroides
(Fig. 3B). Both within the class of Bacteroidia, Prevotellaceae UCG-
001 comprised 46.6% of these sequences, and Bacteroides com-
prised 29.9%. In the Firmicutes, the most abundant genus con-
sisted of the Lachnospiraceae NK4A136 group (28.9%), followed by

the Ruminococcaceae UCG-014 (8.3%), both within the Clostridia
class.

Drivers of microbiome composition

Sampling site, state, species and subspecies were all signifi-
cantly associated with the variation between microbiomes (P <

0.002, Table 2) when using Bray–Curtis distances. Sampling site
explained the greatest amount of variation (Bray: R2 = 0.424),
followed by subspecies (Bray: R2 = 0.149, P < 0.001). Within the
two subspecies of T. ruficaudus (T. r. ruficaudus and T. r. simu-
lans), we detected clustering by sampling location for both Bray–
Curtis (stress = 0.11) and weighted UniFrac (stress = 0.06) dis-
tances (Fig. 4, see Figure S5 (Supporting Information) for full
species NMDS), which supports the PerMANOVA results that
local environment plays a role in determining microbiome com-
position. Homogeneity of variances of our ordinations did not
differ among chipmunk species for Bray–Curtis (ANOVA F1,11 =
2.43, P = 0.147) and weighted UniFrac distance matrices (ANOVA
F1,11 = 2.03, P = 0.182). Host species only explained between
7% of the variance in gut microbiome communities. Following
species, the state that chipmunks were sampled in contributed
least to variation in chipmunk microbiomes (Bray: R2 = 0.130,
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6 FEMS Microbiology Ecology, 2020, Vol. 96, No. 1

Figure 3. Average relative abundance of bacterial phyla (A) and classes (B) detected in fecal samples of eight chipmunk (sub)species sampled at 15 sites in 4 US states.

Table 2. PerMANOVA (adonis) tests for significance and relative contribution of two environmental and three phylogenetic factors to variation
in Bray–Curtis, and weighted and unweighted UniFrac Distance Matrices constructed from chipmunk fecal microbiomes.

Bray Unweighted UniFrac Weighted UniFrac

Pseudo-F | R2 P Pseudo-F | R2 P Pseudo-F | R2 P

State 2.23 | 0.130 <0.001 1.55 | 0.062 0.008 4.01 | 0.063 0.016
Sampling site 1.68 | 0.424 <0.001 1.34 | 0.214 0.002 1.59 | 0.210 0.248
Species 1.40 | 0.070 0.002 1.4 | 0.141 <0.001 2.19 | 0.151 0.251
Subspecies 1.52 | 0.149 <0.001 1.27 | 0.069 0.064 2.20 | 0.037 0.166
Sex 0.96 | 0.016 0.745 0.98 | 0.017 0.633 0.89 | 0.016 0.993

P < 0.001), which is unsurprising since chipmunk (sub)species
ranges extend across state lines. Sex of chipmunks did not
significantly contribute to variation in their microbiome (Bray:
R2 = 0.016, P = 0.745).

DISCUSSION

All mammals host complex microbial communities that are
involved in myriad aspects of their biology. Understanding
the role that the microbiome plays in mammalian evolution
requires sampling wild organisms across a spectrum of ecolo-
gies and evolutionary histories. Here, we investigated phylosym-
biosis of the fecal microbiome in eight Western chipmunk
(sub)species. These species belong to a rapidly diverged group
of closely related rodents with complex patterns of range and
niche overlap. We did not find evidence of phylosymbiosis,

which contradicts our predictions that phylosymbiotic relation-
ships would increase with host relatedness, and decrease with
geographic distance. Phylosymbiosis is regarded as a common
pattern in host-associated microbiomes; our findings contrast
with previous mammalian studies, that showed evidence for
phylosymbiosis, e.g. in American pika (Kohl et al. 2018), humans
(Ross et al. 2018) and in general across 14 mammalian orders
(Nishida and Ochman 2018). The lack of evidence for phylosym-
biosis in chipmunks could be attributed to several factors. It
seems most likely that niche and/or range overlap of many of our
samples, has resulted in homogenization of microbiome com-
munities through horizontal transfer. The horizontal transfer
may originate directly from shared environment, from a shared
ecosystem, shared dietary elements or physical contact. Patchi-
ness may degrade strong species-specific microbiomes, as differ-
ent more isolated populations of widespread species could come
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Figure 4. Non-metric Multidimensional Scaling ordination constructed from weighted UniFrac and Bray–Curtis matrices of fecal microbiomes collected from two T.

ruficaudus subspecies (T. r. ruficaudus and T. r. simulans) at four sites in Idaho. Shapes represent different subspecies sampled, and colors represent sampling sites

into contact with different sets of neighboring species. Alterna-
tively, the lack of phylosymbiosis could be due to the rapid evolu-
tion of the clade or insufficient sample size. These three factors
are discussed individually below.

First, the species sampled for our study do not live in geo-
graphic isolation. There is significant overlap in species range
(Fig. 1), which could facilitate gene and microbiome transfer,
(but note there is substantial local patchiness within chipmunk
species ranges). Western chipmunks show relatively high lev-
els of introgressive hybridization (Sullivan et al. 2014). Acrosin
and CYTB tree topologies matched on 50% of nodes, which is not
unexpected as mitochondrial introgression is well documented
within our focal species and the placement of individuals within
clades with introgression events can have a large effect on topol-
ogy congruence metrics like RF. Mitochondrial haplotype can
affect the microbiome (Ma et al. 2014; Hirose et al. 2017) and the
discordance between mitochondrial and nuclear phylogenies in
western chipmunks led to the hypothesis that mitochondrial
clade may be more strongly related to the microbiome than the
nuclear data is.

However, contrary to these expectations, we did not detect
any differences in the level of phylosymbiosis between the two
phylogenetic markers and the microbiome. Despite the known
association between mitochondrial haplotype and microbiome,
we found no correlation between microbiome and host for this
marker. In addition, the lack of correlation between the nuclear
marker, acrosin and the microbiome does not show a phylosym-
biotic relationship. Environment and diet can affect microbiome
composition. Their range overlap exposes different chipmunk
species to similar environments and diets, which could lead
to convergence of microbiomes across (sub)species (Muegge
et al. 2011). We found that sampling site, or the direct envi-
ronment the chipmunk interacts with, explained almost half
of the variation detected in microbiome samples. Chipmunks
that are exposed to the same environmental microbiomes could
be colonized by the same microorganisms, leading to across-
species similarities in gut microbiomes. Our results are incon-
gruent with other rodent studies. A study investigating envi-
ronmental and host species effects on microbiomes in three

rodent taxa, shrews, mice and voles, showed strong host species
effects despite similar habitats (Knowles, Eccles and Baltrūnaitė
2019). Similarly, wild house mice (Mus musculus) kept in a com-
mon garden environment showed continued host-specific gut
microbiomes, despite assumed similar microbial environments
(Suzuki et al. 2019). The strong site effects we detected could
potentially be associated with chipmunk-specific behaviors, but
we need additional studies to confirm this.

Second, the chipmunk species in our study rapidly and rela-
tively recently diverged, which could result in insufficient time
for phylosymbiosis to occur. However, co-divergence of chip-
munks and parasitic pinworms was detected (Bell et al. 2016;
Bell, Demboski and Cook 2018) within this time frame. Although
phylosymbiosis does not rely on matching time scales between
host and microbiome (Moran, Ochman and Hammer 2019), the
co-divergence of higher parasites like pinworms indicates that
microbial co-divergence should also be possible over this time
frame. From our study species, the two T. ruficaudus subspecies,
T. r. ruficaudus and T. r. simulans, split most recently at 326
100 years ago (90% CI: up to 2 854 839 years; Hird and Sulli-
van (2009)). Kohl et al. (2018) found strong phylosymbiosis sig-
nal among populations of American pika that split 150 000–
900 000 years ago (Galbreath, Hafner and Zamudio 2019), indi-
cating that phylosymbiosis can manifest on timescales simi-
lar to the chipmunk divergences in our dataset. However, pika
populations have experienced almost complete isolation since
they split due to their specialized mountain top habitats (Kohl
et al. 2018). Nishida and Ochman (2018) found large varia-
tion in divergence times of species that showed phylosym-
biotic relationships, but a positive relationship between the
phylosymbiosis and divergence time was observed across ani-
mal clades by Brooks et al. (2016). Their mammalian lineage
contained six ’Peromyscus’ species that diverged 11.7 million
years ago and showed complete congruence between phyloge-
netic and microbiome trees on a species level, although these
samples were raised in captivity, which can alter microbiomes
(Hird 2017).

Last, larger sample sizes and a more thorough geographic
sampling of chipmunk populations may be needed to detect
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Figure 5. Relative abundance of bacterial phyla in the gut microbiome of chip-

munks in our study [1], and 6 additional mammalian taxa. Results were obtained
from [2] Hatton et al. 2017, [3] Bobbie, Mykytczuk and Schulte-Hostedde, 2017, [4]
Rosshart et al. 2017, [5] Debebe et al. 2017, [6] Kohl et al. 2018 and [7] Crowley et

al. 2017.

phylosymbiosis between such recently diverged hosts. However,
the absence of phylosymbiosis in our study indicates that, even
with larger sample sizes, the effect is unlikely to be strong.
Our limited sample was nevertheless sufficient to demon-
strate that chipmunk microbial community similarities were
determined mostly by sampling site (42.4%), although sub-
species still explained 14.9% of variation. More interspecific
comparisons of wild-caught samples will shed light on the fre-
quency of species tracking versus locality tracking.

Characterization of the chipmunk microbiome

The chipmunk microbiome was dominated by Bacteroidetes and
Firmicutes. These two phyla frequently make up the major-
ity of mammalian microbiomes (Debebe et al. 2017; Rosshart
et al. 2017), but Firmicutes is usually the more abundant phy-
lum (Fig. 5) (Ley et al. 2008; Kohl et al. 2018). Bacteroidetes made
up over 70% of the chipmunk microbiome and Firmicutes aver-
aged only 24%. As seen in Fig. 5, a high abundance of Bac-
teroidetes was also observed in another rodent species, the
Guinea pig (Cavia porecellus), but this trend was not consistent
across all rodents (Fig. 5). Bacteroidetes are involved in fermen-
tative degradation of biopolymers (Thomas et al. 2011). They
have the ability to metabolize more than a dozen plant- and
host-derived polysaccharides (Gibiino et al. 2018), and the high
abundance in the chipmunk gastrointestinal tract may be an
adaptation to a predominantly plant-based diet. However, other
herbivorous mammals do not show similar high Bacteroidetes
abundances, indicating potential other, non-diet related func-
tions.

Moreover, chipmunks are omnivorous, and their diets have
been observed to include plant material, seeds, fruits, fungi,
insects and bird eggs and nestlings (Ostfeld, Jones and Wolff
1996; Schmidt et al. 2001; Kuhn and Vander Wall 2009; Teron and
Hutchingson 2013), and further studies into seasonal and local
diet preferences of the chipmunk species in our study are war-
ranted to test this hypothesis.

Overall, our findings did not support our prediction that
microbiome similarity increased with increasing host phylo-
genetic relatedness or decreasing geographic distance among

hosts. The lack of phylosymbiosis in chipmunks may be due
to ecological niche overlap among some (sub)species, but this
hypothesis requires further testing given our limited sampling
and the propensity for many species to niche partition. Local
environment, or sampling site, did explain most variation in
microbiome composition, which support this hypothesis.

SUPPLEMENTARY DATA

Supplementary data are available at FEMSEC online.
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