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Abstract.—In order to have confidence in model-based phylogenetic analysis, the model of nucleotide substitution adopted
must be selected in a statistically rigorous manner. Several model-selection methods are applicable to maximum likelihood
(ML) analysis, including the hierarchical likelihood-ratio test (hLRT), Akaike information criterion (AIC), Bayesian infor-
mation criterion (BIC), and decision theory (DT), but their performance relative to empirical data has not been investigated
thoroughly. In this study, we use 250 phylogenetic data sets obtained from TreeBASE to examine the effects that choice
in model selection has on ML estimation of phylogeny, with an emphasis on optimal topology, bootstrap support, and
hypothesis testing. We show that the use of different methods leads to the selection of two or more models for ∼80% of
the data sets and that the AIC typically selects more complex models than alternative approaches. Although ML estima-
tion with different best-fit models results in incongruent tree topologies ∼50% of the time, these differences are primarily
attributable to alternative resolutions of poorly supported nodes. Furthermore, topologies and bootstrap values estimated
with ML using alternative statistically supported models are more similar to each other than to topologies and bootstrap
values estimated with ML under the Kimura two-parameter (K2P) model or maximum parsimony (MP). In addition, Swof-
ford-Olsen-Waddell-Hillis (SOWH) tests indicate that ML trees estimated with alternative best-fit models are usually not
significantly different from each other when evaluated with the same model. However, ML trees estimated with statistically
supported models are often significantly suboptimal to ML trees made with the K2P model when both are evaluated with
K2P, indicating that not all models perform in an equivalent manner. Nevertheless, the use of alternative statistically sup-
ported models generally does not affect tests of monophyletic relationships under either the Shimodaira-Hasegawa (S-H) or
SOWH methods. Our results suggest that although choice in model selection has a strong impact on optimal tree topology,
it rarely affects evolutionary inferences drawn from the data because differences are mainly confined to poorly supported
nodes. Moreover, since ML with alternative best-fit models tends to produce more similar estimates of phylogeny than
ML under the K2P model or MP, the use of any statistically based model-selection method is vastly preferable to forgo-
ing the model-selection process altogether. [Akaike information criterion; Bayesian information criterion; decision theory;
hypothesis tests; likelihood-ratio test; maximum likelihood; model selection; nonparametric bootstrap.]

Computational methods that utilize an explicit model
of sequence evolution have come to dominate phy-
logenetics. It has been well established that the per-
formance of model-based methods, such as maximum
likelihood (ML) and Bayesian estimation, depends on
the ability of the chosen model to capture the under-
lying evolutionary process adequately. If the model
ignores particularly important parameters, it will under-
estimate the magnitude of evolutionary change, which
may lead to inconsistent phylogenetic estimation (e.g.,
Gaut and Lewis, 1995; Huelsenbeck and Hillis, 1993;
Sullivan and Swofford, 1997, 2001). Conversely, if an
overly complex model is used, the additional parameters
will largely capture stochastic signal and the decreased
amount of information available for each calculation
will lead to increased variation in parameter estimates
and, in extreme cases, to nonidentifiable parameters
(Rannala, 2002; Lemmon and Moriarty, 2004). Conse-
quently, a model should be used that balances the
trade-off between avoidance of bias associated with un-
derparameterized models and increased variance gener-
ated by modeling superfluous parameters (Posada and
Buckley, 2004; Steel, 2005; Sullivan and Joyce, 2005). Sub-
stitution models must therefore be selected in a statisti-
cally rigorous manner and several methods have been
developed to select models under specific criteria. Four
of these methods, the hierarchical likelihood-ratio test
(hLRT), Akaike information criterion (AIC), Bayesian in-
formation criterion (BIC), and decision theory (DT), are
relevant to ML analysis and will be addressed here. For

more detailed reviews of these model-selection methods,
see Posada and Buckley (2004) and Sullivan and Joyce
(2005).

The hLRT was the first statistical method widely ap-
plied to phylogenetic model selection (Frati et al., 1997;
Huelsenbeck and Crandall, 1997; Posada and Crandall,
1998; Sullivan et al., 1997) and remains the most com-
monly utilized model-selection method. The hLRT con-
sists of a series of pairwise comparisons between nested
models; the process is repeated until the method con-
verges on the simplest model that cannot be rejected at
a given significance level. Although the hLRT is sim-
ple to implement and may perform well in many cases
(e.g., Posada and Crandall, 2001), there are drawbacks
associated with its usage, including starting point and
path dependence (Cunningham et al., 1998; Pol, 2004),
reliance on an arbitrarily selected significance level, and
lack of relevant theory to guide the traversal of model
space by the requisite series of pair wise comparisons
(reviewed by Posada and Buckley, 2004; Sullivan and
Joyce, 2005). In addition, the hLRT cannot be used to
weight candidate models in order to calculate model-
averaged parameter estimates. Therefore, the use of al-
ternative model-selection methods such as the AIC and
BIC have been advocated as ways around the path de-
pendence of the hLRT and as ways to incorporate model
averaging into phylogenetic estimation (e.g., Alfaro and
Huelsenbeck, 2006; Johnson and Omland, 2004; Kelchner
and Thomas, 2007; Posada and Buckley, 2004; Sullivan
and Joyce, 2005).
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The AIC is based on the Kullback-Leibler distance,
which measures the information loss associated with fit-
ting a constrained model to the data (Akaike, 1973). AIC
scores are a function of both the log-likelihood score,
which measures the fit of the model to the data, and a
term that penalizes additional parameters. Because the
addition of parameters will always increase the likeli-
hood score, the penalty term guards against the selection
of overparameterized models. AIC scores are calculated
simultaneously for all candidate models and the model
with the lowest score (i.e., that minimizes the distance to
the unconstrained model) is selected as optimal under
the AIC. The relative support for each candidate model
can be determined by calculating the rescaled (or �) AIC,
which is the difference between the best AIC score and
the score of the model in question. Although there is
a correction for the AIC, the AICc (Hurvich and Tsai,
1989), which should be used when the ratio of sample size
to free parameters is small, quantifying sample size can
be problematic (e.g., deciding between sequence length,
variable sites, number of taxa, etc.). Because the output
of the AIC and AICc converge as sample size increases,
it has been suggested that the AICc be used for all data
sets (Burnham and Anderson, 2002, 2004; Posada and
Buckley, 2004).

The BIC is used to approximate the model with the
maximum posterior probability given the data and uni-
form priors across candidate models (Schwarz, 1978).
The BIC superficially resembles the AIC and is calcu-
lated based on the maximized joint (not marginal) log-
likelihood and a penalty term that penalizes additional
parameters more strongly than the AIC. Consequently,
the BIC tends to select simpler models than the AIC
(Posada and Crandall, 2001; Abdo et al., 2005). Minin
et al. (2003) developed a DT approach to model selection
that uses a loss function to minimize expected branch-
length error. This approach tends to select the simplest
model that provides branch-length estimates similar to
the best model under the BIC. DT appears to outper-
form the hLRT and AIC, even though it tends to select
less complex models than both of these methods (Abdo
et al., 2005; Minin et al., 2003). In addition, rescaled (�)
scores can be calculated for candidate models under the
BIC and DT in the same manner that they are estimated
for the AIC.

Although it is widely known that the use of unsup-
ported models can affect the outcome of phylogenetic
analysis (e.g., Kelsey et al., 1999; Sullivan and Swofford,
1997), it is has also been demonstrated that alternative
model-selection methods can select different models for
the same data and that, in at least some cases, the use
of alternative best-fit models (i.e., models selected under
different selection criteria) can change the resulting tree
topology. Abdo et al. (2005) simulated data from a rodent
mtDNA data set and found that the hLRT, AIC, BIC, and
DT methods often selected different models for the same
replicate. Although use of alternative best-fit models in-
fluenced the resulting ML tree topology in many cases,
the different model-selection methods did not differ sig-
nificantly in their ability to recover the correct tree. When

the effects of model selection on several hundred real
data sets were examined, Lemmon and Moriarty (2004)
found that the hLRT and AIC chose different models for
75% of the data sets. However, they did not include the
BIC or DT methods in the model-selection tests and did
not evaluate the effects of using alternative best-fit mod-
els on phylogenetic analysis. Similarly, Pol (2004) exam-
ined 18 empirical data sets and found that the AIC and
alternative implementations of the hLRT selected differ-
ent models for 16 data sets. Although use of alternative
best-fit models changed the ML tree topology for two
(out of eight) data sets, differences among trees were
very slight (one or two nearest neighbor interchanges)
and primarily due to nodes with low bootstrap support.

Even though it is known that the model-selection
methods applicable to ML analysis can select alternative
best-fit models, most systematists continue to select
models via either the hLRT or AIC method (usually us-
ing ModelTest; Posada and Crandall, 1998). It is therefore
important to determine how often the hLRT, AIC, BIC,
and DT methods select different models for empirical
data and assess how often the use of alternative best-
fit models affects the outcome of phylogenetic analysis.
In this article, we examine the effects of using different
model-selection methods in a ML framework and com-
pare the results to those obtained with ML using the
Kimura two-parameter (K2P) model (Kimura, 1980), a
common default model, as well as the maximum par-
simony (MP) method. We first examine how often the
four model-selection methods choose different models
for the same data and subsequently conduct ML analy-
ses to determine how the use of alternative models influ-
ences optimal topology and bootstrap support. We then
test whether alternative ML trees are significantly differ-
ent when evaluated under the same model (i.e., if dif-
ferences among topologies could be ascribed to phylo-
genetic uncertainty). We conclude by investigating the
effects of model selection on hypothesis tests of mono-
phyletic relationships.

METHODS

Data Collection

In order to obtain a representative sample from
the phylogenetic literature, we downloaded 250 pre-
aligned DNA data sets from TreeBASE (http://www.
treebase.org). Although the content of TreeBASE is
biased towards multicellular eukaryotes and frequently
sequenced genes, this bias reflects the large amount
of phylogenetic data available for certain plants, ani-
mals, and fungi as well as commonly sequenced gene
segments. In all, the culled data represented 1 viral, 1
bacterial, 13 unicellular eukaryote, 77 fungal, 73 plant,
83 animal, and 2 combined eukaryote data sets, ranging
from species to domain level. The data included 136 nu-
clear, 49 mitochondrial, 36 chloroplast, and 29 multiple
genome data sets, which represented 72 protein, 69 RNA,
13 noncoding, and 96 mixed product gene segments.

We prepared the data sets for analysis by first im-
porting them into PAUP*4.0b10 (Swofford, 2002) and
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removing all alignment regions labeled by the original
authors as poor or ambiguous. Once these regions were
discarded, we removed redundant haplotypes with gaps
treated as fifth character states. Consequently, the num-
ber of taxa and characters included in our analysis was
not always identical to those reported in the primary
literature. Even after poor alignment regions and redun-
dant haplotypes had been removed, the data sets exhib-
ited a great deal of diversity. For example, the number
of unique haplotypes ranged from 5 to 317 (x̄ = 44.8),
sequence length varied from 256 to 9237 nucleotides (nt)
(x̄ = 1651.8), and maximum p-distance ranged from 1.3%
to 76.4% (x̄ = 18.29%). Detailed information and cita-
tions for each data set, as well as all data collected as
part of this study, are provided as online supplementary
material (http://SystematicBiology.org).

Model Selection

We began our analysis by selecting best-fit models
from among the 56 stationary, reversible Markov models
included in the model-selection software Modeltest and
DTModSel (Minin et al., 2003; i.e., the common GTR +
I + � family models). We used PAUP* to calculate ML
scores for each candidate model and then used Model-
test to choose best-fit models under the hLRT, AICc, and
BIC. In order to calculate optimal models with DT, we re-
analyzed the data sets in PAUP* and used the DTModSel
script (Minin et al., 2003) to identify models with the low-
est expected risk. Branch lengths were not included as
parameters to be optimized during the model-selection
process and sequence length was used a proxy for sam-
ple size in the AICc, BIC, and DT calculations (see Posada
and Buckley [2004] for a discussion of sample size in
phylogenetics).

Although we can examine many aspects of model se-
lection by calculating the best model under alternative
criteria, this strategy does not allow us to investigate how
well these methods differentiate among alternative mod-
els. The model ranks and rescaled (�) scores calculated as
part of AICc, BIC, and DT model averaging can be used to
assess support for alternative models under each selec-
tion criterion. We used ModelTest to obtain model ranks
and scores for alternative best-fit models (i.e., those se-
lected using the hLRT, BIC, and DT methods) under the
�AICc as well as for alternative models (i.e., those se-
lected using the hLRT, AICc, and DT) under the �BIC.
In addition, model ranks and delta values for models se-
lected by the hLRT, AICc, and BIC were compared under
DT using a version of DTModSel that had been modified
to produce rescaled DT scores.

Because simulating DNA sequence data using Seq-
Gen (Rambaut and Grassly, 1997) precludes inclusion
of gaps and ambiguous characters, we removed these
characters from each alignment using PAUP*. We then
excluded 25 data sets with 50 or fewer remaining char-
acters from further analysis, leaving 225 condensed data
sets from which to draw inferences on the effects of model
selection. After removing characters with missing data
and or/ambiguity, we collapsed redundant haplotypes
and repeated model selection as described above.

Phylogenetic Analysis

We conducted ML analyses in PAUP* for all 225 con-
densed data sets using alternative best-fit models as well
as the K2P model. We estimated initial model parame-
ters from a neighbor-joining tree constructed with the
LogDet distance correction and used these parameter es-
timates as starting values for the first ML heuristic search
iteration, which was conducted using tree-bisection-
reconnection (TBR) branch swapping on 10 random-
addition starting trees. We subsequently performed two
additional ML iterations while re-optimizing parameter
estimates after each iteration (following Sullivan et al.,
2005). Three data sets failed to reach an optimal topology
after 2 months of continuous heuristic search and were
subsequently excluded from the analysis. In addition to
ML, we conducted MP analyses for all applicable data
sets by first obtaining 100 starting trees via random step-
wise addition and carrying out heuristic searches by TBR
branch swapping. In order to quantify topological dif-
ferences among trees, we calculated symmetric-distance
differences (SDDs; Robinson and Foulds, 1981) among
all pairs of alternative ML trees as well as between ML
and MP trees. Because the magnitude of SDD values de-
pends on the number of taxa, we obtained rescaled val-
ues by dividing each SDD by the respective number of
sequences.

Although SDD values allow us to quantify overall dif-
ferences among topologies, they do not let us assess sup-
port for individual nodes (i.e., support for bipartitions in
the data). We conducted nonparametric bootstrap anal-
yses in PAUP* for 40 data sets using ML with alternative
models as well as MP to quantify support for both nodes
that were present in all trees regardless of method (which
we will refer to as invariable nodes) and nodes that
were present or absent depending on the model-selection
method (variable nodes). For each ML analysis, we used
previously optimized model-parameter estimates and
calculated 1000 bootstrap replicates using a heuristic
search with random-addition starting trees and TBR
branch swapping. We carried out MP bootstrap analy-
ses in a similar manner.

Although the use of different model-selection meth-
ods may lead to the inference of incongruent phyloge-
nies, it is not known if these differences could be due
to uncertainty in estimating the ML tree. We therefore
performed a series of Swofford-Olsen-Waddell-Hillis
(SOWH) tests (based on the methods of Goldman et al.,
2000) to determine whether alternative ML trees were
significantly different when evaluated under the same
model. We limited our analysis to the most and least
complex models selected for 60 data sets as well as the
K2P model. For each analysis, we first evaluated the test
statistic

δ = ln L(D|MA, TA) − ln L(D|MA, TB),

where the first component is the maximum log-
likelihood of the data given model A and the ML
tree (topology and branch lengths) generated under
model A and the second component is the maximum
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log-likelihood of the data given model A and the ML
tree estimated with model B. The first term of the test
statistic had already been calculated; we calculated the
second term in PAUP* by conducting an iterative ML
search under model A constrained to the tree estimated
with model B. Because the generation of a parametric
null distribution requires a fully bifurcating topology, we
resolved all polytomies by inserting nodes with branch
lengths set to zero. We produced the null distribution by
simulating two sets of 100 replicates in Seq-Gen, with one
set constructed under model A and tree A and the other
under model A and tree B. We then imported all sim-
ulated data into PAUP* and conducted a single heuris-
tic ML search for each replicate. We calculated the null
distribution following the methods outlined in Sullivan
(2005), compared the rank of the test statistic to the null
distribution, and assessed the test statistic at α = 0.05. We
then calculated the reciprocal test statistic (i.e., the differ-
ence in log-likelihood between the data given model B
and tree B versus model B and tree A) and evaluated it
against the appropriate null distribution.

Hypothesis Testing

In addition to altering optimal tree topology, the use of
alternative model-selection methods has the potential to
change statistical inferences drawn from ML hypothesis
tests. Consequently, we conducted tests of monophyletic
relationships in PAUP* using the Shimodaira-Hasegawa
(S-H; Shimodaira and Hasegawa, 1999) and SOWH
methods under alternative models to determine whether
choice in model selection influenced the outcome of these
tests. Tests were conducted for 27 a priori hypotheses
(distributed among 6 data sets) posed by the original au-
thors of the data; the scope of hypotheses ranged from
intraspecific biogeographic relationships to the evolu-
tionary history of animal phyla. Because we had previ-
ously calculated unconstrained ML trees with alternative
models, we began each analysis by calculating optimal
ML trees constrained to each hypothesis using the iter-
ative search strategy. Although the entire set of possi-
ble topologies should be included in S-H tests (Goldman
et al., 2000), the test is typically conducted using only
the ML tree and one or more alternative topologies (e.g.,
Bos and Posada, 2005). Consequently, we only included
the ML and constraint trees in our analyses and carried
out each test with 1000 replicates analyzed via the RELL
method. The resulting test statistics were evaluated at
α = 0.05. For each SOWH test, we used Seq-Gen to simu-
late 100 replicates on the constraint tree and subsequently
performed single heuristic ML searches in PAUP* to find
the optimal log-likelihood scores constrained and uncon-
strained to the given hypothesis.

RESULTS

Model Selection

For the 250 full data sets, we found that the hLRT, AICc,
BIC, and DT criteria favored the same model 51 times
(20.4%), two models 123 times (49.2%), three models 70

times (28.0%), and four models 6 times (2.4%). There was
a significant difference in the average number of model
parameters selected by each method (one-way ANOVA;
d.f. = 3; P < 0.001); the AICc selected an average of 8.4 ±
1.8 parameters per data set, whereas the hLRT selected
6.9 ± 2.2 parameters, the BIC selected 6.7 ± 2.5, and DT
selected 6.7 ± 2.4. Rate heterogeneity parameters were
almost always included in selected models, while most
variation occurred in the rate matrix; this is consistent
with results obtained by Abdo et al. (2005) and Kelchner
and Thomas (2007). Although model-selection methods
often selected models with a similar number of parame-
ters, they occasionally chose models that differed by up
to 9 (out of 10) parameters (Fig. 1). Consequently, there
is no guarantee that the use of different approaches will
result in the selection of models with similar complexity.

Out of the 199 data sets where different methods
selected two or more models, there was a significant dif-
ference in the average number of times method pairs se-
lected the same model (one-way ANOVA; d.f. = 5; P <
0.001). The BIC/DT methods selected the same model
most often while the hLRT/AICc methods agreed for
only a small number of data sets, (Table 1). These re-
sults vary somewhat from the simulation results of Abdo
et al. (2005), especially in regards to comparisons involv-
ing the AIC; we found that the AICc and hLRT selected
the same model for 15.6% of our data sets, whereas Abdo
et al. (2005) found that they agreed in 76.3% of their repli-
cates. There was also a significant difference in the av-
erage number of times each method selected the most
and least parameter-rich models for each data set (one-
way ANOVA; d.f. = 3; P < 0.001 in both instances). The
AICc (rather than the hLRT) selected the most complex
models for the majority of data sets, whereas the BIC
selected the least parameter-rich model most often

FIGURE 1. Maximum difference in the number of model parame-
ters selected by the hierarchical likelihood-ratio test (hLRT), corrected
Akaike information criterion (AICc), Bayesian information criterion
(BIC), and decision theory (DT) methods for 250 data sets with gaps and
ambiguous characters included. The frequencies of alternative best-fit
models with different numbers of parameters are listed above each
bar. Although model-selection methods often selected models with a
similar number of parameters, model complexity varied by as much
as 9 (out of 10) parameters. The large number of data sets with alter-
native models that differed by three parameters is due to models that
parameterized base frequencies as either equal (no free parameters) or
unequal (three free parameters).
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TABLE 1. The frequencies with which the hierarchical likelihood-
ratio test (hLRT), corrected Akaike information criterion (AICc),
Bayesian information criterion (BIC), and decision theory (DT) meth-
ods selected the same models. Calculations were based on 199 data sets
where methods had selected two or more models; the convergence fre-
quencies among method pairs differed from those of Abdo et al. (2005).
P-values were calculated based on a binomial distribution; the number
of matches significantly deviated from random for each method pair.

Comparison Matches P-values

hLRT & AICc 31 (15.6%) <0.001
hLRT & BIC 65 (32.7%) <0.001
hLRT & DT 59 (29.6%) <0.001
AICc & BIC 44 (22.1%) <0.001
AICc & DT 42 (21.1%) <0.001
BIC & DT 172 (86.4%) <0.001

(Table 2). In addition, the hLRT did not select the most
complex GTR+I+� model for most of the data sets, as
was observed by Minin et al. (2003). The AICc selected
a more complex model than the hLRT, BIC, and DT for
the majority of data sets, whereas it rarely chose a less
complex model. The hLRT normally selected less com-
plex models than the AICc and performed fairly similar
to the BIC and DT methods. The BIC and DT also tended
to select less complex models than the AICc and virtually
always selected the same models as each other (Table 3).

We found that model-selection methods tended to se-
lect a greater number of models and more divergent pa-
rameters for small data sets (i.e., those with relatively
short sequence length or a small number of taxa), but the
correlation did not explain much of the variation in the
data. There was a weak negative correlation between the
number of haplotypes and number of selected models
(d.f. = 248; P = 0.004; r2 = 0.033), sequence length and
number of selected models (d.f. = 248; P < 0.001; r2 =
0.058), and sequence length and difference in number of
parameters (d.f. = 248; P = 0.025; r2 = 0.020). There was
a suggestion of a relationship between the number of
sequences and difference in parameters (d.f. = 248; P =
0.073), but there was no discernable relationship between
maximum p-distance and either the number of selected
models (d.f. = 248; P = 0.863) or spread in parameters
(d.f. = 248; P = 0.652).

Although there were some discernable patterns in
model weighting, the poor correlation between model
rank and delta values made it impossible to interpret
strictly the degree to which the rescaled AICc, BIC, and

TABLE 2. The rates with which each model-selection method se-
lected the most and least complex models for each data set. Calcu-
lations were based on 195 data sets with multiple supported models
that varied in number of parameters. The hLRT did not select the most
parameter-rich GTR+I+� model for the majority of data sets and nor-
mally favored a less complex model than the AICc.

Method Most complex Least complex

hLRT 48 (24.6%) 117 (60.0%)
AICc 182 (93.3%) 4 (2.1%)
BIC 36 (18.5%) 147 (75.4%)
DT 40 (20.5%) 135 (69.2%)

TABLE 3. The frequencies with which each model-selection method
selected more (A > B), less (A < B), or the same (A = B) number of
parameters as alternative methods. Counts were made based on 199
data sets where methods had selected two or more models. The AICc

normally selected more complex models than alternative methods.

Number of parameters

Method A Method B A > B A = B A < B

hLRT AICc 13 40 146
hLRT BIC 74 78 47
hLRT DT 74 71 54
AICc BIC 155 44 0
AICc DT 152 46 1
BIC DT 4 180 15

DT criteria supported models chosen by other methods.
The majority of models selected by the hLRT, BIC, and DT
appeared to have some support under the rescaled AICc,
following the guidelines suggested by Burnham and An-
derson (2002, 2004) for interpreting rescaled AIC scores
(i.e., they had � AICc < 10). There was no significant dif-
ference across model-selection methods in the number of
strongly supported alternative models (� ≤ 2) under the
AICc; however, a difference in the number of supported
models emerged as the delta values increased (Table 4).
The guidelines suggested by Burnham and Anderson
(2002, 2004) provide an approximate framework for in-
terpreting rescaled AIC values; however, these guide-
lines may not hold when the data are not independently
distributed (Burnham and Anderson, 2002). Although
the AICc provided similar support for the hLRT, BIC,
and DT model ranks, the rescaled AICc provided sub-
stantially less support for the models chosen by the hLRT
than by the BIC or DT. Overall, it appears that the �AICc,
�BIC, and �DT methods all provide the least support
for models selected via the hLRT and that �DT provides
fairly strong support for models selected under the BIC
(Table 5).

Phylogenetic Analysis

The use of alternative best-fit models for phylogeny
estimation resulted in different ML topologies for 93 of
the 188 condensed data sets where methods had selected
more than one model (∼50% of the data sets). The hLRT
and AICc selected different models the most often and

TABLE 4. �AICc values for models selected by the alternative hLRT,
BIC, and DT methods. Only models with �AICc > 0 were included.
The guidelines proposed by Burnham and Anderson (2002, 2004) sug-
gest that models with 0 < � ≤ 2 are strongly supported by the AIC,
those with 4 ≤ � ≤ 7 have moderate support, and models with � > 10
have almost no support. These results suggest that alternative models
selected by the hLRT, BIC, and DT are normally not strongly supported
by the AICc.

�AICc scores

Method 0–2 2–4 4–7 7–10 >10

hLRT 37 24 42 17 71
BIC 35 24 31 32 34
DT 40 25 27 33 32
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TABLE 5. The average rank and rescaled (�) scores for optimal
models selected by the hLRT, AICc, BIC, and DT methods when eval-
uated under alternative criteria. Although guidelines for interpreting
rescaled BIC and DT scores are not available, the results suggest that
best-fit models under one criterion are not necessarily strongly sup-
ported by an alternative method.

Support measure (�)

Selection method AICc BIC DT

hLRT 6.44/19.95 4.84/19.02 10.55 0.14
AICc — 6.04/7.7 10.58/0.10
BIC 6.65/7.29 — 8.08/0.00
DT 6.35/9.38 3.59/14.92 —

led to the largest proportion of divergent topologies. The
BIC and DT selected the same model most often and
when they did select different models, use of these mod-
els often produced the same tree topology. Furthermore,
default use of the K2P model instead of a model-selection
method changed the resulting ML topology for ∼72% of
the data sets, whereas use of MP leads to different opti-
mal trees for almost all of the data sets (∼90%). Rescaled
SDD values indicate that ML trees estimated with alter-
native best-fit models were much more similar to each
other than to ML trees estimated with the K2P model or
MP trees (Table 6).

Nonparametric bootstrap analyses indicate that vari-
able nodes tended to be weakly supported, while invari-
able nodes had fairly constant bootstrap support across
trees estimated with alternative methods (Fig. 2). All
nodes that varied across ML trees estimated with al-
ternative best-fit models had bootstrap values ≤75% (x̄
56.6%), whereas nodes that varied between ML trees es-
timated with best-fit models and the K2P model had
bootstrap values ≤90% (x̄ 58.8%) and those that var-
ied between ML and MP trees had bootstrap values
≤95% (x̄ 61.5%). Similarly, invariable nodes that were

TABLE 6. Results of model selection and phylogenetic analysis for
condensed data sets. Comparisons between ML trees estimated with
alternative model-selection methods were based on 188 data sets with
multiple supported models, whereas comparisons between alternative
ML trees and both ML trees estimated with the Kimura two-parameter
(K2P) model and maximum-parsimony (MP) trees were made based
on 222 data sets. Symmetric-distance differences (SDDs) were rescaled
by the number of taxa and averaged across all applicable data sets.

Matches Matches Average
Comparison (models) (topologies) rescaled SDD

hLRT & AICc 24 (12.8%) 117 (62.2%) 0.07
hLRT & BIC 63 (33.5%) 133 (70.7%) 0.09
hLRT & DT 59 (31.4%) 125 (66.5%) 0.08
AICc & BIC 28 (14.9%) 119 (63.3%) 0.07
AICc & DT 29 (15.4%) 118 (62.8%) 0.07
BIC & DT 156 (83.0%) 177 (94.1%) 0.11
hLRT & K2P — 65 (29.3%) 0.22
AICc & K2P — 60 (27.0%) 0.22
BIC & K2P — 64 (28.8%) 0.22
DT & K2P — 63 (28.4%) 0.22
hLRT & MP — 20 (9.0%) 0.36
AICc & MP — 22 (9.9%) 0.36
BIC & MP — 21 (9.5%) 0.36
DT/MP — 22 (9.9%) 0.36

present in all ML trees made with statistically sup-
ported models had bootstrap values that differed by
≤19% (x̄ 2.0%); nodes that were present in ML trees
made with both statistically supported models and the
K2P model had bootstrap values that varied by ≤35% (x̄
3.9%), whereas nodes that were present in both ML and
MP trees had support values that differed by ≤41% (x̄
5.2%).

The results of the SOWH tests demonstrate that, in
most cases, ML trees constructed with alternative best-
fit models were not significantly different (Fig. 3). Only
one set of ML trees estimated with best-fit models was
found to have significant differences. Although it is not
clear why this was the only set of significantly different
ML trees, it is worth noting that this data set had rel-
atively high divergence (∼25% uncorrected p-distance)
and that the ML tree topologies differed strongly (stan-
dardized SDD 0.60). Although ML trees estimated from
best-fit models were normally not significantly different
according to the SOWH test, ML trees estimated with the
K2P model often differed from ML trees generated with
statistically supported models. We found that ML trees
estimated with the K2P model were not compatible with
trees estimated under best-fit models for 42 of the 60 data
sets (70%) when evaluated with the SOWH test. Conse-
quently, our results indicate that not all models behave in
an equivalent fashion and that the K2P model lacks pa-
rameters that contribute to the shape of alternative ML
trees.

Despite these results, the use of alternative model-
selection methods, as well as default use of the K2P
model, did not seem to influence tests of a priori hypothe-
ses (Table 7). The use of alternative best-fit models did not
change the outcome of S-H tests of monophyly, although
use of the K2P model led to the rejection of an otherwise
supported hypothesis for one data set. Conversely, the
use of different best-fit models changed the interpreta-
tion of SOWH tests for two hypotheses, whereas use of
the K2P model did not change the outcome of any test.
As expected, the S-H test produced more conservative
results than the SOWH test and choice of test changed
the statistical interpretation of eight hypotheses (∼30%
of the data). It appears that the use of a particular model-
selection strategy may be less important than choice of
an appropriate test and, consequently, computationally
intensive methods such as model-averaged hypothesis
testing (Posada and Buckley, 2004) may not be necessary
for this set of substitution models (i.e., the GTR + I + �
family).

DISCUSSION

In order to have confidence in the accuracy of model-
based methods, one must use a model that adequately
parameterizes the data without undue loss of analytical
power. Although several model-selection methods exist,
empirical users of model-based methods frequently se-
lect models via either the hLRT or AIC. We have found
that the use of different model-selection methods leads to
the selection of alternative models for ∼80% of our data
sets and that the use of different best-fit models changes
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FIGURE 2. The outcome of nonparametric bootstrap analyses conducted to assess support for variable nodes (those that changed across
optimal trees estimated with different methods) as well as invariable nodes (those that were present in all trees regardless of method). (a) Nodes
that varied among maximum likelihood (ML) trees estimated with statistically supported models (black) had lower bootstrap values (x̄ 56.6%)
than nodes that varied between ML trees made with best-fit models and either ML trees estimated with the Kimura two-parameter (K2P) model
(white) or maximum parsimony (MP) trees (grey; x̄ 58.8% and 61.5%, respectively). (b) Nodes that were invariable among ML trees estimated
with statistically supported models (black) tended to have similar bootstrap values across trees made with alternative best-fit models (x̄ 2.0%).
The difference in bootstrap support values was higher when ML trees estimated with supported models were compared to ML trees estimated
with the K2P model (white) or MP trees (grey; x̄ 3.9% and 5.2%, respectively).

the optimum tree topology in ∼50% of cases. Because
our data include a wide range of phylogenetic data sets,
this result is probably very general. Consequently, many
researchers who have used the hLRT or AIC to select
a model for their analyses may have selected a differ-
ent model and generated an alternative ML tree if they
had used a different model-selection method. However,

ML trees calculated with alternative best-fit models are
normally not significantly different from each other and,
consequently, use of any statistically supported model
may provide a statistically equivalent estimate of the
phylogeny.

The results of this study are similar to those ob-
tained by Abdo et al. (2005), who found that the BIC
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TABLE 7. Results of a priori tests of monophyletic relationships evaluated with both the Shimodaira-Hasegawa (S-H) and Swofford-Olsen-
Waddell-Hillis (SOWH) tests. Twenty-seven hypotheses were divided among six diverse data sets; full hypotheses and references are given in
the Supplementary Material. Use of alternative model-selection methods had little influence on the outcome of hypothesis tests.

Best-fit models S-H test SOWH test Best-fit models S-H test SOWH test

Hypotheses 16–18
HKY+I+� P < 0.01 P < 0.01

Hypothesis 1 K2P+I+� P < 0.01 P < 0.01
GTR+I+� P = 0.45 P = 0.08 K2P P < 0.01 P < 0.01
TrN+I+� P = 0.42 P = 0.01 Hypothesis 19
F81+I+� P = 0.42 P < 0.01 HKY+I+� P < 0.01 P < 0.01
K2P P = 0.34 P < 0.01 K2P+I+� P < 0.01 P < 0.01

Hypothesis 2 K2P P = 0.05 P < 0.01
GTR+I+� P = 0.46 P = 0.03 Hypotheses 20, 21
TrN+I+� P = 0.45 P = 0.05 HKY+I+� P < 0.01 P < 0.01
F81+I+� P = 0.47 P = 0.11 K2P+I+� P < 0.01 P < 0.01
K2P P = 0.22 P < 0.01 K2P P < 0.01 P < 0.01

Hypothesis 3 Hypothesis 22
GTR+I+� P = 0.25 P < 0.01 GTR+I P = 0.16 P = 0.44
TrN+I+� P = 0.25 P < 0.01 HKY+� P = 0.24 P = 0.61
F81+I+� P = 0.25 P < 0.01 HKY+I P = 0.25 P = 0.31
K2P P = 0.07 P < 0.01 K2P P = 0.26 P = 0.31

Hypotheses 4, 5 Hypothesis 23
GTR+� P > 0.99 P > 0.99 GTR+I P = 0.09 P < 0.01
TVM+� P > 0.99 P > 0.99 HKY+� P = 0.09, 0.08 P = 0.04
K2P P > 0.99 P > 0.99 HKY+I P = 0.09, 0.08 P < 0.01

Hypothesis 6 K2P P = 0.09 P < 0.01
GTR+� P = 0.29 P = 0.03 Hypothesis 24
TVM+� P = 0.30 P = 0.03 GTR+I+� P < 0.01 P < 0.01
K2P P = 0.28 P < 0.01 TIM+I+� P < 0.01 P < 0.01

Hypotheses 7–12 K2P P < 0.01 P < 0.01
GTR+� P > 0.99 P > 0.99 Hypothesis 25
TVM+� P > 0.99 P > 0.99 GTR+I+� P = 0.02 P < 0.01
K2P P > 0.99 P > 0.99 TIM+I+� P = 0.02 P < 0.01

Hypotheses 13, 14 K2P P = 0.02 P < 0.01
HKY+I+� P < 0.01 P < 0.01 Hypothesis 26
K2P+I+� P < 0.01 P < 0.01 GTR+I+� P = 0.28 P < 0.01
K2P P < 0.01 P < 0.01 TrN+I+� P = 0.28 P < 0.01

Hypothesis 15 K2P P = 0.08 P < 0.01
HKY+I+� P = 0.18 P < 0.01 Hypothesis 27
K2P+I+� P = 0.13 P < 0.01 GTR+I+� P = 0.11 P < 0.01
K2P P = 0.32 P < 0.01 TrN+I+� P = 0.12 P < 0.01

K2P P = 0.02 P < 0.01

FIGURE 3. An example of a Swofford-Olsen-Waddell-Hillis
(SOWH) test conducted to assess whether ML trees generated with
different models are significantly different when evaluated under the
same model. In this example, the AICc had selected the GTR+I+�

model (10 free parameters) whereas the BIC and DT had picked K2P+I
(2 free parameters). A SOWH test was used to assess whether the ML
tree estimated with the GTR+I+� model was significantly subopti-
mal to the ML tree generated with the K2P+I model when evaluated
under the K2P+I model. The test failed to reject the null hypothesis,
indicating that although the trees had disparate topologies and branch
lengths, they were not significantly different.

and DT consistently selected simpler models than the
hLRT and AIC and that these models performed at least
as well as more complex alternatives. In addition, both
studies found that differences among alternative best-
fit models were primarily confined to differences in the
transition/transversion rate (or other aspects of the R-
matrix). The minor differences between the results of this
study and those obtained by Abdo et al. (2005) are due
to discrepancies in summary statistics; methods tended
to pick the same model and infer the same ML tree more
often for the simulated data of Abdo et al. (2005) than
for the empirical data used in this study. These differ-
ences are expected and most likely due to the simplified
conditions used to simulate data.

The hLRT, AIC, BIC, and DT approaches are exam-
ples of relative model-selection methods that choose an
optimal model regardless of the absolute fit between
candidate models and the data. There are currently
two methods that evaluate the absolute fit between the
model and data: the Goldman-Cox test (Goldman, 1993;
Whelan et al., 2001) and posterior predictive simulations
(Huelsenbeck et al., 2001; Bollback, 2002). These methods
have not been used as standard model-selection methods
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because of their computational complexity but have been
used to assess the absolute fit of models selected by other
methods (e.g., Sullivan et al. 2000; Althoff et al., 2006;
Bos and Posada, 2005; Carstens et al., 2004, 2005; Foster,
2004). Despite situations where the Goldman-Cox test
has failed to reject models as inadequate (e.g., Demboski
and Sullivan, 2003), there have also been cases where sta-
tistically supported models did not provide a sufficient
fit to the data (e.g., Foster, 2004), leading to speculation
that the current set of models is inadequate and that there
is a need to develop more complex models (e.g., Kelch-
ner and Thomas, 2007; Sanderson and Kim, 2000; Whe-
lan et al., 2001). An evaluation of the set of 56 commonly
used substitution models with both the Goldman-Cox
test and posterior predictive simulations would help as-
sess the need for more complex models as well as clarify
the relationship between model-fit and model-selection
methods.

Our results suggest that there may be substantial vari-
ance when estimating the optimal ML tree. Although
model-selection uncertainty can be accounted for by av-
eraging candidate trees by an objective statistical cri-
terion (Posada and Buckley, 2004), it is not clear how
to weight candidate phylogenies. Posada and Buckley
(2004) state that trees could be weighted by their re-
spective AIC model score; however, there may not be
a direct relationship between a model’s AIC score and
the variation among resulting ML trees. Consequently,
it would be particularly informative to extend our ap-
plication of the SOWH test to comparisons among ML
trees made with all 56 common substitution models. The
results could be compared with various tree-weighting
schemes, as well as the results of model selection and
the Goldman-Cox test, to help determine an appropri-
ate model-selection method. In addition, the results will
allow us to determine if default use of the most com-
plex substitution model is a viable alternative to model
selection for this set of substitution models.

Although there is much to still be learned about the
effects of model selection on phylogenetic analysis, our
results provide guidelines for systematists who utilize
model-based phylogenetic methods. First, because de-
fault use of the K2P model appears to be inadequate,
researchers should always use a statistically rigorous
model-selection method. Second, because alternative
best-fit models appear to produce statistically equivalent
estimates of phylogeny, it may be beneficial to use the
simplest supported model to reduce the computational
burden associated with analysis. Lastly, because it seems
that support for some nodes may vary depending on the
substitution model, systematists should always assess
support for ML trees with the nonparametric bootstrap
and carefully evaluate their results.

CONCLUSIONS

Although we have found that the use of the hLRT,
AICc, BIC, and DT methods often leads to the selection
of alternative best-fit models and recovery of different
ML trees, the differences among these trees are primarily

due to poorly supported nodes and the trees that are
optimal under different statistically supported models
are usually not significantly different from each other.
Furthermore, ML trees constructed with alternative best-
fit models are typically more similar to each other than
they are to ML trees generated with the K2P model or MP
trees. In addition, use of models supported by alternative
approaches does not seem to have a large influence on the
outcome of hypothesis tests. Therefore, it appears that
the approach used for model selection does not affect ML
analysis and that the use of any model-selection method
is preferable to using an unsupported default model or
MP. Moreover, because alternative best-fit models seem
to behave in a similar manner, it may be preferable to
select the simplest supported model (often selected by
the BIC or DT) for ML analysis.
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