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Abstract
Leaf-litter-dwelling invertebrates serve an important role in ecosystem function by breaking down nutrients and potentially 
acting as indicators of habitat quality. However, this community is understudied due to difficulties related to sampling and 
taxonomic identification. To explore this community, we sampled leaf litter from the coastal and Cascade ranges of the 
Pacific Northwest of North America and searched > 200 samples for micro-invertebrates. We removed and photographed 
more than 400 invertebrate specimens, sequenced a portion of the mitochondrial gene cytochrome oxidase I (COI) for 
60 samples, and used COI and the BLASTn database to identify invertebrates. Using these sequences and environmental 
data from the collection localities, we investigated the phylogeographic history of the two best-sampled species of micros-
nails, the toothless column snail (Columella edentula) and the conical spot snail (Punctum randolphii). Results suggest 
that populations of these species from the coastal and Cascade ranges may have survived in a single refugium during the 
Pleistocene glacial cycles and recolonized the coastal and Cascade ranges during the Holocene. Our results add to the 
knowledge of species responses to the Pleistocene glacial cycles in the Pacific Northwest and suggest that future studies 
should aim to increase representation of micro-invertebrates, perhaps using metabarcoding techniques.

Keywords: micro-invertebrates, Pacific Northwest temperate rainforest, microsnails, phylogeography, barcoding

Introduction

The Pacific Northwest of North America (PNW) 
encompasses the largest extent of mesic, tem-
perate forest in the world and is home to more 
than 150 endemic species (Nielson et al. 2001). 
These forests are dominated by western redcedar  
(Thuja plicata) and western hemlock (Tsuga het-
erophylla) (Daubenmire and Daubenmire 1968) 
and occur both inland, in the Northern Rocky 

Mountains of Montana, Idaho, and British Colum-
bia, as well as in the Cascades and coastal ranges 
along the western coast from northern California 
to Alaska (Figure 1). The coastal and inland forests 
are largely separated by the arid Columbia Basin, 
although patches of forest are present to the south 
in the central Oregon highlands and to the north 
in the Okanogan highlands.

The history of the region is geologically and 
ecologically complex, with multiple forces shap-
ing the distributions of mesic forest endemic 
taxa (reviewed in Brunsfeld et al. 2001). The 
earliest records of mesic forests in the region 
date to the middle Eocene in the northern Rocky 
Mountains of northeastern Washington (Graham 
1999). With the orogeny of the Cascades (2 to 5 
mya), the arid Columbia Basin formed separating 
the inland and coastal forests and leading to the 
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current disjunct distribution. Later, during the 
Pleistocene, the region was heavily affected by 
100,000 year glacial cycles during which large 
portions of the region were covered in ice (Delcourt 
and Delcourt 1993). During glacial cycles, many 
endemic species may have contracted their ranges 
to isolated refugia, expanding their ranges after 
glaciers retreated (Brunsfeld et al. 2001). Refugia 
have been proposed along the coast south of the 
glaciated regions, as well as farther north along 
the coast (e.g., on the Olympic Peninsula) and 
on islands (e.g., Vancouver Island, Haida Gwaii) 
(Brunsfeld et al. 2001; Figure 1). Inland refugia 
in the Northern Rocky Mountains have also been 
proposed, for example in the Clearwater River 
drainages (Brunsfeld et al. 2001).

A great deal of phylogeographic research 
has focused on this region, with contrasting pat-
terns identifi ed for rainforest endemics (e.g., 
Carstens et al. 2005). Several species of am-
phibians, including tailed frogs (Ascaphus spp.; 

Nielson et al. 2001, 2006) 
and salamanders (Plethodon 
and Dicamptodon; Carstens 
et al. 2004, 2005; Steele et al. 
2005; Pelletier and Carstens 
2016) appear to have survived 
in multiple, isolated refugia, 
and to have expanded to fi ll 
their current range following 
the Last Glacial Maximum 
(LGM). In contrast, some 
plants, including willow 
(Salix) and pine (Pinus), and 
mammals such as the water 
vole (Microtus richardsoni) 
show evidence of expan-
sion from a single refugium 
after the LGM (Carstens et 
al. 2005). More recent work 
has focused on some of the 
region’s invertebrates. Un-
like amphibians, for which 
cryptic diversity associated 
with refugial structure has 
been found both within and 
between the Northern Rocky 
Mountains and the coastal 

and Cascade ranges, many of the invertebrates 
studied to date have completely lacked structure 
between these two disjunct patches of rainforest 
(e.g., the robust lancetooth snail [Haplotrema 
vancouverense], Smith et al. 2017; and taildrop-
per slugs [Prophysaon spp.], Smith et al. 2018). 
Rather, refugial structure has been found in the Cas-
cade Range, sometimes with deep splits between 
northern (Washington) and southern (Oregon) 
Cascades populations (Smith et al. 2018, Smith 
and Carstens 2020), as was previously suggested 
based on a study of plants from the region (Soltis 
et al. 1997). In other cases, there has been evidence 
of deep structure and multiple refugia, but the 
geographic locations of those refugia have been 
diffi cult to infer, as in the millipede Chonaphe 
armata (Espíndola et al. 2016).

Despite the recognized abundance of and in-
creased interest in the invertebrates of the region, 
most of the small invertebrates that occupy the leaf 
litter have not been investigated in the PNW tem-
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Figure 1. Map of the Pacifi c Northwest of North America, showing important locations, 
including potential refugia on Haida Gwaii Island, Vancouver Island, and the 
Olympic Peninsula. The light blue outline indicates the hypothesized extent 
of glaciers during the Last Glacial Maximum from Dyke et al. (2003).
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perate forests. Leaf-litter-dwelling invertebrates 
are important components of the forest ecosystem 
and serve an important ecological role by breaking 
down leaf litter (Edwards et al. 1973). Amongst 
the detritivores expected to be present in most 
temperate forest leaf litter are microsnails, small 
terrestrial snails that are often < 2 mm in diameter. 
In addition to their role in nutrient breakdown, mi-
crosnails may serve as strong indicators of habitat 
quality and land use (Douglas et al. 2013); despite 
this, they are understudied even in comparison to 
other terrestrial gastropods. Due to their minute 
size, and a combination of phenotypic plasticity in 
some groups and morphological stasis in others, 
microsnails are difficult to identify based on mor-
phological characters (Weigand et al. 2011). The 
mitochondrial gene cytochrome oxidase I (COI; 
the classical DNA barcoding locus for animals) 
has been widely used for species identification 
and delimitation (e.g., Hebert et al. 2003, Weigand  
et al. 2011). The use of DNA barcoding could aid 
in rapid identification of microsnails and other 
leaf-litter-dwelling invertebrates, a potentially 
useful first step to understanding the composition 
of leaf-litter communities.

Further, DNA barcoding may reveal previously 
unrecognized cryptic diversity, particularly in 
regions like the PNW, where cryptic diversity is 
widespread in larger invertebrate and vertebrate 
lineages. Thus, in addition to using DNA barcod-
ing to identify invertebrates sampled from the 
leaf litter, we took a more in-depth look at the 
phylogeography of two microsnails. The conical 
spot snail (Punctum randolphii Dall 1895) is found 
in western Washington, northwestern Oregon, the 
Idaho Panhandle, the Blue and Wallowa mountains 
of eastern Oregon, and in southwestern British 
Columbia (Burke 2013), with a range mirror-
ing many other temperate rainforest endemics 
from the PNW. The distribution and taxonomy 
of the second species, the toothless column snail 
(Columella edentula) (Draparnaud 1805), has 
been difficult to determine. This species was origi-
nally described as Pupa edentula by Draparnaud 
(1805), with a type locality in France. In 1840, 
P. simplex (Gould 1840) was described from a 
single locality in Cambridge, Massachusetts, and 
it was noted that this species was nearly identical 

to P. edentula. The genus was later changed to 
Columella. Burke (2013) references C. edentula 
as a synonym for C. simplex, which is suggested 
to be an “unresolved” species (Turgeon et al. 
1998). According to Burke (2013), C. edentula 
is distributed in North America, ranging from 
Alaska, through Canada and the northern United 
States, and south through much of the PNW and 
into California (Burke 2013). Though this species 
is not present in the most arid areas, it is thought 
to be present in more xeric areas than the typical 
temperate rainforest endemics. No previous work 
has investigated the phylogeographic history or 
potential for undescribed cryptic diversity in these 
two species.

In this study, we set out to generate barcode 
sequences for micro-invertebrates present in 
the PNW and to investigate the evolutionary 
history of two abundant microsnails using phy-
logeographic analyses. First, we collected and 
then searched leaf-litter samples, and removed 
all micro-invertebrates. Second, for a subset of 
these invertebrates, we sequenced a portion of the 
mitochondrial gene COI to identify the organisms. 
For two species of microsnails found in the leaf 
litter (P. randolphii and C. edentula) we combined 
sequence data from this study with data from 
GenBank to investigate whether cryptic diversity 
is evident in this group, or whether genetic data 
point to recent expansion from a single ice age 
refugium in the Cascade Range.

Methods

Sampling

We collected samples of leaf litter from throughout 
the Cascades and coastal ranges (Figure 2). At each 
site, we collected leaf-litter samples from one or 
more locations, depending on the size, heteroge-
neity, and composition of the sites. We collected 
samples from 117 locations from 41 unique sites, 
with a median of 3 samples per site (minimum = 1, 
maximum = 7, mean = 2.85). We tended to collect 
samples from more locations at larger sites with 
more macro-invertebrates present, as we hoped to 
maximize the number of invertebrates sampled. 
From each sampling location, we collected two 
samples: one for use in determining leaf-litter 
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pH (pH samples) and one for use in measuring 
leaf-litter moisture content (moisture-content 
samples) because pH and leaf-litter moisture 
content have been shown to be of importance in 
the assembly of land snail communities (Barker 
and Mayhill 1999, Hylander et al. 2005). Leaves 
were collected from near locations where mac-
roinvertebrates—specifically, terrestrial gastro-
pods—were sampled, and pH samples included 
deciduous leaves and coniferous needles. The pH 
samples were collected in 709-mL Tupperware 
containers. For the moisture-content samples, 
we collected ten deciduous leaves from the forest 
floor; these ten leaves were weighed immediately 
upon collection and again later, after drying, to 
assess moisture content of the leaf litter at the site 
following Hadley (2009). All leaf-litter samples 
were frozen immediately to prevent degradation of 
organisms. Later, leaf-litter samples were thawed, 
and each leaf-litter sample was sorted. The pH 

samples were searched for 45 minutes under 
light and 10× magnification, and for moisture 
samples, each leaf was searched carefully under 
light and 10× magnification until all leaves had 
been searched. Each organism that we found was 
initially identified to broad taxonomic categories 
(i.e., Class) and placed in 95% ethanol. After 
removing micro-invertebrates from the leaf litter, 
all leaf-litter samples were dried in a dehydrator 
for 150 minutes at 95 °C. The moisture-content 
samples were again weighed, the final weight was 
subtracted from the original weight, and leaf-litter 
moisture content was estimated as the proportion 
of the dry weight for each sample (Hadley 2009). 
The pH samples were ground using a mortar and 
pestle and sent to the STAR laboratory at Ohio 
State University to measure pH.

At all sites where leaf litter was collected, we 
also collected elevation, slope aspect and angle, 
the proportion of deciduous versus coniferous 

Figure 2. Sampling of leaf litter and invertebrates from the Pacific Northwest of North America in 2017. A) Map of sampling 
localities across the Pacific Northwest. NC: northern (Washington) Cascades, BW: Blue and Wallowa mountains, SC: 
southern (Oregon) Cascades, NRM: Northern Rocky Mountains, VI: Vancouver Island. B) Pie chart showing the classes 
of the sequenced invertebrates, based on Basic Local Alignment Search Tool (BLASTn) results. C) Photograph of a 
Punctum randolphii sample sequenced in this study. D) Photograph of Columella edentula-PNW sample sequenced in 
this study.
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trees, and canopy cover, as these variables are also 
thought to be important for terrestrial gastropod 
communities (Barker and Mayhill 1999, Hylander 
et al. 2005). To measure elevation and to record 
latitude and longitude, we used a Garmin eTrex 
GPS. We measured slope degree and aspect using a 
clinometer and compass, respectively. To estimate 
the proportion of coniferous versus deciduous trees, 
we identified the ten closest trees to the point of 
collection and recorded the proportion that were 
coniferous. We used a densiometer (Forestry 
Suppliers Spherical Crown Densiometer, Convex, 
Rapid City, SD) to estimate canopy cover at each 
point of collection following manufacturer’s 
standard protocols.

DNA Extraction and Sequencing

DNA was extracted using DNeasy Blood and 
Tissue kits (Qiagen, Germantown, MD). Since 
destructive sampling was necessary to obtain 
DNA due to the small size of the invertebrates, 
photos were taken of each invertebrate prior to 
DNA extraction using a Nikon D3100 digital 
SLR camera and a Leica M80 dissecting scope. 
We then added 180 uL of Buffer ATL and 20 uL 
of Proteinase K to the invertebrates and placed 
them into a 56 °C water bath for 90 minutes. 
Samples were removed from the water bath, and 
any remaining shell or exoskeleton was removed 
and stored in 95% ethanol. The remainder of the 
DNA extraction was performed using the manu-
facturer’s standard protocol (Qiagen). A 710-bp 
portion of the COI gene was amplified via PCR 
using the HCO2198 and LCO1490 primers (Fol-
mer 1994), cleaned using ExoSAP-IT (Thermo 
Fisher Scientific, Waltham, MA), and sequenced 
at the Ohio State University Biomedical Research 
Tower. Forward and reverse chromatograms 
were assembled in Geneious Prime v2019.0.4 
(Kearse et al. 2012). Invertebrates were identi-
fied by searching the NCBI nucleotide database 
using the Basic Local Alignment Search Tool 
(BLASTn) program (McGinnis and Madden 2004) 
implemented within Geneious. We searched the 
nucleotide collection, retrieved matching regions, 
and allowed a maximum of 100 hits.

Based on the number of specimens that were 
collected and identified using BLASTn, we se-
lected two microsnail species, C. edentula and  
P. randolphii, for downstream analysis. In ad-
dition to the data collected here, we download-
ed 60 sequences of Columella from GenBank  
(Ansart et al. 2014; Hebert et al. 2014; Telfer et al. 
2015; Harl et al. 2017; DeWaard 2017a, 2017b), 
including 12 identified as C. edentula as well as 
sequences from the Barcode of Life Data System 
(BOLD; Ratnasingham and Hebert 2007). Most 
of these BOLD sequences were products of the 
International Barcode of Life Initiative, and some 
were identified only as Order Stylommatophora, 
but grouped with other Columella sequences. 
Additionally, a sequence from Chonrinidae  
(Granaria frumentum illyrica) was downloaded 
from GenBank and used as an outgroup, as this 
was the closest outgroup available (Harl et al. 
2017). We retrieved 15 available Punctum COI 
sequences from GenBank in March 2019, in-
cluding eight samples identified as P. randolphii 
(Hebert et al. 2014; DeWaard, 2017a, 2017b). 
We downloaded additional sequences from the 
genus Punctum from BOLD. Some were identi-
fied only as Order Stylommatophora but grouped 
with other Punctum sequences. Additionally, a 
sequence from one species within Punctidae, 
but not from Punctum (i.e., Paralaoma servilis), 
was downloaded from GenBank and used as an 
outgroup (DeWaard 2017b). Sequence alignment 
was performed using the MUSCLE alignment al-
gorithm (Edgar 2004) for Punctum and Columella 
separately, implemented within Geneious using 
default settings.

Gene Tree Estimation

We used the AutoModel function in Phylogenetic 
Analysis Using Parsimony* (PAUP* and other 
methods) v4.0a (Swofford 2001) to select the 
best model of sequence evolution for Punctum 
and Columella, separately. As a starting tree, 
we used a neighbor-joining tree calculated from 
LogDet/paralinear distances. We considered seven 
substitution schemes, gamma rate variation across 
sites (+G), and a proportion of invariable sites 
(+I) and compared models using corrected Akaike 
information criteria corrected for small sample 
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size (AICc), Bayesian information criteria (BIC), 
and decision theory (DT).

We used GARLI v2.0.1 (Zwickl 2006) to 
estimate the maximum-likelihood gene tree for 
Punctum and for Columella, using the model 
of nucleotide substitution selected using DT in 
PAUP*. Stepwise addition using a random se-
quence order and a maximum likelihood (ML) 
criterion was used to generate a starting tree, 
and state frequencies, the shape of the gamma 
distribution, and substitution rates were estimated 
from the data. When gamma rate variation was 
included, we used four categories. We conducted 
two runs and stopped each run when the likelihood 
did not improve for 20,000 generations, with an 
improvement defined as a change of more than 
0.01 units. Then 100 bootstrap replicates were 
performed using the same settings as above to 
assess nodal support. To estimate the posterior 
distribution of gene trees and parameters, we 
used MrBayes v3.2.7a (Ronquist et al. 2012). We 
used the model of nucleotide substitution selected 
based on DT in PAUP*. We conducted two in-
dependent runs with 5,000,000 generations and 
four chains per run. When gamma rate variation 
was included, four categories were used, as in the 
ML analyses in GARLI. For all other settings and 
priors, default settings were used. We discarded 
the initial 25 percent of runs as burn-in, and evalu-
ated convergence using the average deviation of 
split frequencies.

Estimating the Number of Refugia

We used approximate Bayesian computation 
(ABC) to estimate the number of refugia. We 
performed this analysis both with and without  
a priori population assignments based on geogra-
phy. For all analyses aimed to estimate the number 
of refugia, we used only samples that grouped 
with C. edentula from the PNW in the inferred 
gene trees (C. edentula-PNW, see Results). For 
P. randolphii, we considered only P. randolphii 
from the green clade in Figure 3, as we considered 
the other samples to likely be misidentified (see 
Results and Discussion).

To assess the number of refugial populations 
without making a priori assumptions about in-

dividual assignments to particular populations, 
we used ABC to estimate the number of refugia 
during the LGM for each species while integrat-
ing over population assignments (Supplemental 
Figure S1). First, we calculated the Euclidean 
distance between samples using the python pack-
age ‘SciPy’ (Lindblad and Kisner 2013). Next, we 
simulated 100,000 datasets for each species. For 
each simulation, we first assigned individuals to 
one of three populations using K-Means clustering 
with randomization. Individuals were initially as-
signed to populations based on K-Means clustering 
implemented in the python package ‘Scikit-learn’ 
(Pedregosa et al. 2011). To ensure some random 
noise in this process (i.e., to prevent population 
assignments from being constant across simula-
tions), we used only a single iteration of K-Means 
clustering in this step. Following initial assignment, 
individuals were reassigned to a population with 
a probability of 0.2. We required that at least two 
individuals were sampled from each population. 
This clustering approach was designed to create 
a balance between taking geographic information 
into account when testing for refugial structure 
and relying completely on geographic information 
to determine population assignments.

Based on these assignments, data were simu-
lated under seven models (about 14,300 datasets 
under each model). Model 1 included a single 
population expanding from a refugium after the 
LGM. Models 2 to 4 included two populations 
expanding from isolated refugia after the LGM 
and differed in which populations were collapsed. 
Models 5 to 7 included three populations expanding 
from isolated refugia after the LGM and differed 
in topology. Simulated data matched the observed 
data in terms of the number of segregating sites, 
which was calculated using a custom python 
script. We ignored sites with missing data when 
calculating the number of segregating sites. Growth 
rates were drawn from uniform U(1,50) priors. 
Divergence times between populations and the 
timing of expansion were also drawn from uniform 
priors. The minimum bound for the divergence 
time priors was based on a time of 115,000 years 
ago (beginning of last glacial cycle), a population 
size of 1,000,000, and species-specific generation 
lengths (from the literature). For the generation 
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length parameter, we used one year as the genera-
tion time, given that many terrestrial gastropods 
reach sexual maturity and have a generation time 
of one year. The upper bound for the divergence 
time priors was based on a time of 5,000,000 years 
ago, a population size of 10,000, and a generation 

length of one year. The minimum and maximum 
bounds on expansion times (the time when expan-
sion stopped) were calculated similarly, with the 
minimum time based on 10,000 years ago and the 
maximum time based on 20,000 years ago. We 
required that the fi rst divergence time predate the 
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Figure 3. Gene trees for all Columella and Punctum sequences from this study, GenBank, and Barcode of Life Data System 
(BOLD), and sampling localities in the Pacifi c Northwest of North America (PNW). A) Maximum likelihood estimate 
(MLE) of the cytochrome oxidase I (COI) gene tree for Columella. Numbers on the nodes represent bootstrap values 
(BS) / posterior probabilities (pp). Samples within C. edentula-PNW are color coded corresponding to the map in C; B) 
MLE of the COI gene tree for Punctum. Numbers on the nodes represent bootstrap values (BS) / posterior probabilities 
(pp). Samples of P. randolphii are color coded corresponding to the map in D; C) Sampling map for C. edentula-PNW, 
including GenBank samples and samples from this study. These are only the samples from the group highlighted in blue 
on the COI tree in A. Colors correspond to sampling regions; D) Sampling map for P. randolphii, including GenBank 
samples and samples from this study. The yellow samples are the three divergent samples from GenBank identifi ed as 
P. randolphii.
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second, and that expansion times predated diver-
gence times. We used Hudson’s ms (Hudson 2002) 
to simulate data and calculated summary statistics 
using a Perl script (Pelletier and Carstens 2014). 

We calculated π and Tajima’s D (Tajima 1989) 
from the empirical data using the R package 
‘Popgenome’ (Pfeifer et al. 2014), and we plotted 
histograms of simulated and observed data to verify 
that our observed data fell within the range of the 
simulated data for the two summary statistics. 
Finally, we used the R package ‘abc’ (Csilléry 
et al. 2012) to assess power and perform model 
selection. Prior to assessing power, we collapsed 
our models to one (model 1), two (models 2 to 4), 
or three (models 5 to 7) refugia models. To assess 
power, we used the function cv4abc. Briefly, we 
considered 100 simulated datasets from each of 
the three models (one, two, or three refugia) and 
treated those datasets as pseudo-observed data. We 
then used a simple rejection step, a tolerance of 
0.001, and the summary statistics π and Tajima’s 
D to find the simulated datasets closest to these 
pseudo-observed datasets. Finally, we calculated 
the percentage of time the best model was selected 
when data were simulated under each model. 
Next, we used the postpr function to calculate the 
posterior probability of each of the three models 
for the empirical data. As before, we used a simple 
rejection step and a threshold of 0.001, with the 
summary statistics π and Tajima’s D.

To estimate the number of refugia in a more 
traditional framework, we performed ABC with 
individuals assigned to populations based on 
geographic groupings. For C. edentula-PNW, we 
considered three populations: the South Cascades, 
Vancouver Island, and the Northern Rocky Moun-
tains. We omitted a single sample (MLS2017F-
106A) from this analysis, because it was the only 
sample collected from the northern Cascades. We 
considered models with one, two, or three refugial 
populations, allowing for all possible collapsed 
populations and all possible topologies. To account 
for different possible topologies, we simulated 
100,000 datasets, but weighted our simulations 
such that the two and three refugia models (each 
consisting of three submodels) were three times as 
likely to be chosen for any particular simulation 

compared to the single refugium model. Priors, 
cross-validation, and model selection were as 
above. For P. randolphii, we considered four 
populations: the northern Cascades, the southern 
Cascades, Vancouver Island, and the Northern 
Rocky Mountains. We considered models with 
one, two, three, or four refugial populations, and 
simulated 100,000 datasets weighting by the num-
ber of possible topologies such that each potential 
topology had a roughly equal number of simu-
lated datasets. Priors, cross-validation, and model 
selection were as above. We performed all ABC 
analyses with and without samples identified only 
to Order Stylommatophora to evaluate whether 
taxonomic uncertainty and misidentifications 
could affect our results. For C. edentula-PNW, 
we also removed all samples that grouped with 
the focal clade in our mitochondrial gene tree 
but were only identified as C. spp. In the case of  
P. randolphii, this resulted in removing all samples 
from the NRM, and thus the analysis using a priori 
assignments based on geography considered only 
one, two, or three refugia.

Species Distribution Models

To estimate species distribution models for  
P. randolphii and C. edentula-PNW, we used 
the R package ‘biomod2’ (Thuiller et al. 2013). 
We downloaded climate data from the current 
(30 arc-seconds) and from the LGM (2.5 min-
utes) from worldclim (Hijmans et al. 2005). We 
limited the extent of these data to between –150 
and –100 degrees longitude and between 35 and 
65 degrees north latitude. We excluded highly 
correlated variables (r > 0.7) and used seven 
variables in our models (bio4, bio5, bio8, bio14, 
bio15, bio18, bio19). We used occurrence data 
from our collections and from GenBank. We used 
10,000 pseudoabsences drawn at random from the 
background. To estimate the species distribution 
models (SDMs), we used an ensemble approach, 
combining models from four modelling methods: 
1) Maxent; 2) general linear models (GLM), 3) 
random forest (RF); and 4) generalized boosting 
models (GBM). We used 80 percent of the data 
for training and 20 percent for testing. Five runs 
were used to evaluate models, and three runs were 
used to estimate variable importance. Models 
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were evaluated using ROC (receiver operator 
characteristic) and rescaled to allow projections 
to different time periods. When building the en-
semble models, we ignored models with a ROC 
less than 0.85, and weighted models by ROC. 
Then, models were projected onto both the present 
climate layers and onto the LGM climate layers.

Results

Sampling

We sorted through 105 pH samples and 117 mois-
ture samples and searched for micro-invertebrates. 
In total, we removed 401 invertebrates from the 
leaf-litter samples (Figure 2a; Supplemental Table 
S1). Of these, the majority (349) were found in the 
pH samples, as expected, since these contained 
larger amounts of leaf litter. Of the sampled in-
vertebrates, 109 were microsnails.

DNA Extraction and Sequencing

We sequenced 60 invertebrates from the leaf litter, 
including 39 snails. Of the other 21 sequenced 
specimens, 18 were identified as belonging to the 
Phylum Arthropoda, with one sample each from 
Annelida and Amoebozoa. Of the 18 Arthropoda, 
10 belonged to Class Insecta and the others be-
longed to Classes Arachnida, Diplopoda, and 
Entognatha (Supplemental Table S2; Figure 2b). 
The quality and quantity of DNA that we were 
able to extract from these samples was low, likely 
because samples were collected from leaf litter 
that was stored for several weeks in the field after 
collection (though the leaf litter was frozen during 
this time), some individual snails were damaged 
and had died prior to sampling, and all samples 
were very small (i.e., microsnails were < 2 mm 
in diameter). Of the microsnails we were able to 
sequence, we extracted a minimum of 9.3 ng of 
DNA, a median of 102 ng of DNA, and a maximum 
of 2,295 ng of DNA in 150 uL. The low levels 
of DNA extracted from these samples placed a 
practical limitation on the amount of data we were 
able to obtain in this study (Supplemental Table 
S2) and limited our data to high copy mtDNA 
sequences. Including our samples plus those from 
GenBank and BOLD, we obtained 83 Columella 

sequences, 24 of which were initially identified as 
C. edentula (Supplemental Table S3, Figure 3c). 
The Columella sequences collected for this study 
ranged from 602 to 652 bp in length. We obtained 
42 Punctum sequences, including 24 sequences 
identified as P. randolphii (Supplemental Table S4, 
Figure 3d). The P. randolphii sequences collected 
in this study ranged from 526 to 655 bp in length.

Gene Tree Estimation

For Columella, the best model of nucleotide 
substitution was HKY+I+G, based on AICc, 
BIC, and DT. The gene tree estimated in GARLI 
showed deep divergence between Columella 
and the outgroup, making it difficult to discern 
relationships within Columella (Supplemental 
Figure S2). Because of the lack of differentia-
tion within Columella, we estimated gene trees 
for the ingroup only and rooted using midpoint 
rooting. The best model of nucleotide substitu-
tion without the outgroup was HKY+I+G, based 
on AICc, BIC, and DT. The ΔAICc between the 
HKY+I+G and the simplest model (JC) was 398, 
the ΔBIC was 381, and the ΔDT was 0.112. The 
ΔAICc between HKY+I+G and the second-best 
model (K81uf+I+G) was 2.27, and the ΔBIC was 
5.18. The second-best model according to DT 
criteria was TrN+I+G, and the ΔDT between this 
model and HKY+I+G was 0.000840. The MLE 
of the midpoint rooted gene tree included a clade 
comprised of C. edentula and C. spp. samples, as 
well as two samples from BOLD identified only as 
Stylommatophora, collected from the PNW, in the 
range described by Burke (2013; Figure 3a). This 
clade had low to moderate support (BS = 64) in 
the bootstrap analysis, but high support (posterior 
probabilities [pp] = 1.0) in the Bayesian analysis. 
Additionally, both ML and Bayesian analyses sup-
port a clade containing C. simplex, C. spp., a single 
C. edentula sample, and one Stylommatophora 
sample, which includes samples from the PNW 
and from the eastern United States. A third group 
includes one C. columella sample (from Austria), 
two C. edentula samples (one from Austria, one 
from unknown locality), and four samples from 
BOLD identified only as Order Stylommatophora 
from Germany and Finland. A final clade includes 
three C. columella samples (two from Canada, 

125Phylogeography of Microsnails

Downloaded From: https://bioone.org/journals/Northwest-Science on 15 Aug 2023
Terms of Use: https://bioone.org/terms-of-use



one from unknown locality). For downstream 
analyses, we considered only those samples 
grouping in the C. edentula-PNW clade  
(C. edentula-PNW, Figure 3a, blue group). 
Due to the complex and unclear taxonomy of 
Columella, it was difficult to determine the 
specific status of this and other clades, but given 
the divergence between clades, and given that 
the all samples collected from the focal area of 
this study (Cascades and coastal ranges of the 
PNW) belonged to a single clade, we chose this 
clade as the unit of analysis moving forward 
(hereafter, C. edentula-PNW).

For Punctum, the best model of nucleotide 
substitution was HKY+G based on AICc, BIC, 
and DT. The ΔAICc between the HKY+G and 
the simplest model (JC) was 402, the ΔBIC 
was 382, and the ΔDT was 0.527. The ΔAICc 
between HKY+G and the second-best model 
(HKY+I+G) was 0.382, and the ΔBIC was 4.19. 
The second-best model according to DT criteria 
was K81uf+G, and the ΔDT between this model 
and HKY+G was 0.00661. We used this model 
to estimate the MLE of the gene tree in GARLI 
and the posterior distribution of gene trees in 
MrBayes. The MLE of the gene tree showed five 
main groups (Figure 3b): P. randolphii (green),  
P. minutissimum, P. pygmaeum, P. randolphii  
(yellow), and a group with two sequences identi-
fied only as Stylommatophora from California. All 
five groups received high bootstrap support and 
posterior probabilities (Figure 3b). We considered 
only samples from the main P. randolphii clade to 
be P. randolphii (P. randolphii sensu stricto), as the 
other three P. randolphii samples from GenBank 
were highly divergent. Given that these samples 
were divergent from other P. randolphii samples, 
we conservatively treat them as not belonging to  
P. randolphii sensu stricto in downstream analy-
ses. These samples may represent undescribed 
microsnail diversity from the region or may belong 
to a described species for which no sequenced 
samples were available. 

Estimating the Number of Refugia 

For C. edentula-PNW, the observed data included 
26 segregating sites (Table 1). When integrating 

over individual assignments to populations, we 
selected the best model during cross-validation 
95, 79, and 84% of the time for the one, two, 
and three refugia models, and the best model 
was a single refugium model (pp = 0.95), with 
strong support over the second-best model (two 
refugia, BF = 19). When using a priori assign-
ment of individuals to geographic populations, we 
selected the best model during cross-validation 
97, 98, and 94% of the time for the one, two, and 
three refugia models, respectively, and the best 
model was a single refugium model (pp = 1.0). 
We conducted the same analysis, but removed 
all sequences downloaded from GenBank or 
BOLD that were in the focal clade in our mi-
tochondrial gene tree but were not identified 
as C. edentula in the corresponding databases  
(24 samples), and results were qualitatively con-
sistent, with the single refugium model always 
supported as the best model.

For Punctum, the observed data included six 
segregating sites (Table 1). Without using a priori 
assignments of individuals to populations, we 
selected the best model 86, 89, and 77% of the 
time for the one, two, and three refugia mod-
els, respectively, during cross-validation, and 
the best model was the single refugium model  
(pp = 0.98), with high support over the second-best 
model (two refugia, BF = 49.00). When we used  
a priori assignments of individuals to populations, 
we selected the best model 87, 93, 62, and 59% of 
the time for the one, two, three, and four refugia 
models, respectively. Though these results seem 
poor for the three and four refugia models, they 
were mistaken for similar models. Specifically, 

TABLE 1. Summary statistics for Columella edentula-PNW,  
C. edentula-PNW with northern Cascades samples 
omitted (no NC), and Punctum randolphii samples 
from the Pacific Northwest of North America. S is the 
number of segregating sites, π is nucleotide diversity, 
and Tajima’s D is a test statistic based on allele fre-
quencies that is often used to detect deviations from 
neutrality and population size changes.

Species S π Tajima's D
C. edentula-PNW 26 4.45 –0.74
C. edentula-PNW (no NC) 26 4.46 –0.75
P. randolphii 6 0.71 –1.69
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the three-refugia model 
was most often mistaken 
as either a two- or four-
refugia model, and the 
four-refugia model was 
most often mistaken for 
the three-refugia model. 
The best model was a 
single refugium model 
(pp = 0.97), and it had 
strong support over the 
second-best model (two re-
fugia; BF = 32.3). We con-
ducted the same analysis, 
but removed all sequences 
downloaded from Gen-
Bank or BOLD that were 
only identifi ed to the Order 
Stylommatophora (three 
samples), and results were 
qualitatively consistent, 
with the single refugium 
model always supported as 
the best model, with strong 
support as quantifi ed by 
Bayes factors.

Species Distribution Models

For C. edentula-PNW, the average ROC score 
was 0.89 (Supplemental Table S5), and for P. 
randolphii, the average ROC score was 0.96 
(Supplemental Table S6). For both species, we 
recovered the current range of the spaces with 
high predicted suitable climatic habitat, both in 
the coastal and Cascade ranges, and moderate-
to-high predicted suitable climatic habitat in the 
Northern Rocky Mountains (Figure 4). During the 
LGM, we hindcasted suitable habitat primarily on 
the coast and farther south, and we observed less 
suitable habitat overall (Figure 4). This suggests 
that suitable habitat has expanded since the LGM 
for both P. randolphii and C. edentula-PNW.

Discussion

Sampling of Invertebrates

We were able to sample a wide array of inver-
tebrates by collecting leaf-litter samples from 

the temperate rainforests of the coastal and 
Cascade ranges (Figure 2). While this sampling 
approach required many hours spent in the lab 
searching through leaf-litter samples, we were 
able to identify the majority of samples using 
the mitochondrial marker COI (Supplemental 
Table S2). This result suggests that metabarcod-
ing may be a viable approach for identifying 
micro-invertebrates from temperate rainforest 
communities. It is similar in some aspects to the 
use of environmental DNA (eDNA), which has 
been demonstrated as a valuable tool for studying 
biodiversity (reviewed in Bohmann et al. 2014). 
Metabarcoding of leaf-litter samples has previ-
ously been suggested as a viable way to assess 
biodiversity in forests in China and Vietnam 
with a focus on identifying arthropods (Yang 
et al. 2014). Metabarcoding could greatly enhance 
our knowledge of these understudied leaf-litter-
dwelling invertebrates and could expand the 
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Figure 4. Species distribution models reconstructed for Punctum randolphii and Columella 
edentula-PNW from North America, with colors showing ecological suitability for 
each, as specifi ed in the legend. A suitability of 0 indicates that the habitat is not 
predicted to be suitable for the species, while a suitability of 1000 is the highest 
possible suitability. X-axes in fi gures represent degrees north latitude and y-axes 
represent degrees longitude. A) C. edentula-PNW in the present; B) C. edentula-
PNW during the Last Glacial Maximum (LGM); C) P. randolphii in the present; 
D) P. randolphii in the Last Glacial Maximum. 
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phylogeographic knowledge of the PNW to a 
much broader array of taxa. Our work builds 
upon the current database of reference sequences 
and photos for future work using environmental 
sampling techniques. Notably, photographing 
such small specimens, even using a dissecting 
scope, was rather difficult, given the difficulty 
of arranging the specimens appropriately for 
photographs. Dedicated equipment for imaging 
specimens about 2 mm in size would greatly im-
prove the quality of photos, and new techniques 
like microCT scanning offer potential approaches 
to collect more useful phenotypic data from such 
specimens. The ecological data we collected here 
allowed us to make predictions about optimal 
sampling localities for metabarcoding studies 
and may help in focusing sampling efforts for 
future work in this region aimed at collecting 
the species studied here.

Pacific Northwest Phylogeography

The two microsnail species, P. randolphii and 
C. edentula-PNW, have ranges that are similar 
to those of larger invertebrates and invertebrate 
taxa from the PNW (Burke 2013), but the phy-
logeographic patterns found here differ pro-
foundly from other invertebrates that have been 
studied from the region. Despite the limitations 
inherent to a single genetic marker (discussed 
below), we can begin to understand how the 
Pleistocene glacial cycles affected the coastal 
distributions of these species. The lack of deep 
structure observed in the gene trees across the 
coastal ranges of these samples suggests a lack 
of population structure (Figure 3). Furthermore, 
both ABC analyses suggest the presence of a 
single refugium during the Pleistocene glacial 
cycles for C. edentula-PNW and P. randolphii. 

While we expected population structure to 
be present in the taxa based on assumed limited 
dispersal capacity and the lack of previous work 
in the group, there are a few potential explana-
tions for the lack of divergence. First, consistent 
with previous suggestions that microsnails may 
be good indicators of habitat quality (Douglas  
et al. 2013), the microsnails in our sample may 
be particularly vulnerable to habitat disturbance. 

If these microsnails are sensitive to disturbances, 
Pleistocene glacial cycles may have eliminated 
them from large portions of their ranges, and 
they may have recently recolonized much of 
the region. This interpretation is supported by 
SDMs, which indicate that suitable habitat was 
substantially contracted for these snails during 
the LGM (Figure 4). Further, our ABC results 
support a history of recent population expansion 
from a single refugium during the LGM, which is 
consistent with the lack of divergence shown by 
the gene trees (Figure 3). However, an alternative 
interpretation is also possible: microsnails may 
be less dispersal limited than initially expected. 
Microsnails have been reported to be dispersed 
via the digestive tracts of birds (Wada et al. 
2012), and terrestrial slugs have been found in 
bird feathers (Pearce et al. 2012), so animal-
facilitated dispersal may lead to high levels of 
migration across the ranges of microsnails, and 
thus, to a lack of genetic structure. 

Finally, the lack of population structure un-
covered in this study may also be an artefact 
of limited sampling. Though our sampling did 
greatly expand the data available for these two 
microsnails, there are portions of each spe-
cies’ range that remain under-sampled. For  
P. randolphii, the inland rainforests were not well 
sampled, and it is possible that a second refugial 
population could have survived in these ranges 
and was not recovered in our dataset. There is 
also potential for a second clade of P. randolphii 
consisting of the three GenBank samples from 
Vancouver Island that form a separate clade in 
the COI gene tree (Figure 3b). However, given 
that these sequences were generated from samples 
from an unpublished study, it is difficult to verify 
their identity as P. randolphii, and we suspect 
that these samples may represent undescribed 
diversity from the region. Future work should aim 
to collect additional samples from this region to 
evaluate whether undescribed diversity is present. 

For C. edentula-PNW, we lack samples from 
more inland stretches of the species range, as well 
as for the most southern stretches and more arid 
portions of the species range. For this species, 
it is likely that our sampling indicates only a 
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single refugium within the Cascade Range, and 
not a single glacial refugium for the species as 
a whole. Further, the taxonomy and distribution 
of C. edentula has been difficult to resolve, and 
it is unclear whether the specimens collected 
here represent C. edentula sensu stricto or a 
different species. Future work should aim to 
collect Columella more broadly and to resolve 
taxonomic issues in this genus. 

Despite the uncertain taxonomy of our focal 
species specifically and microsnails in general, 
we suspect that it is unlikely that misidentified 
specimens have altered our results. Given the low 
level of diversity observed across the sampled 
populations of the two species, we view it un-
likely that our samples inadvertently included 
other species. Further, if our analyses did include 
such samples, we would suspect that this would 
bias us away from inferring a single refugium by 
inflating our estimates of diversity. However, we 
consistently inferred a single refugium. Further, 
when we removed samples identified only to 
the level of order or genus from our analyses, 
our results remained consistent, suggesting that 
taxonomic uncertainty and misidentification were 
unlikely to have misled our core analyses. Even 
after acknowledging these shortcomings, our 
sampling and the data collected here supported 
only a single Cascades refugium for both spe-
cies, a pattern that contrasts with results from 
previously studied invertebrates (e.g., Smith  
et al. 2017, Smith and Carstens 2020).

Despite the promise of eDNA and metabar-
coding, there are inherent limitations to studies 
based on a single gene. The lack of recombination 
of the mitochondrial genome, its reduced effec-
tive population size and generally high mutation 
rates both make mitochondrial DNA a powerful 
marker for detecting population structure and 
result in a limited view of the phylogeographic 
history of a species (Ballard and Whitlock 2004). 
Additionally, selection and introgression could 
affect phylogeographic inference made based on 
mitochondrial DNA alone (Ballard and Whitlock 
2004). By using a mitochondrial marker, we ob-
served only a single realization of the coalescent 
process, so additional genetic loci would improve 

inferences of the phylogeographic histories of 
these species. However, the data we were able 
to collect in this case were limited due to the 
difficulties of sampling micro-invertebrates 
and of extracting high-quality DNA from these 
invertebrates. Despite this, this study provides 
a substantial increase in the amount of data 
available for this system. Future work should 
aim to take advantage of constantly improving 
sequencing technologies to sequence nuclear 
markers from low-quality DNA, or to extract 
higher quality DNA from small and often dam-
aged samples.

Our results add considerably to our knowl-
edge of species responses to glacial cycles in 
the PNW. Other invertebrates have exhibited 
signals of multiple refugia in the coastal and 
Cascade ranges (Smith et al. 2018), and a lack 
of structure as extreme as that shown here has 
not been shown in invertebrates from the region, 
to our knowledge. By sampling leaf litter, we 
were able to study these previously unstudied 
microsnails and to begin to gather samples of 
many other leaf-litter-dwelling invertebrates. 
Continuing to expand sampling for such inver-
tebrates, via metabarcoding sampling or other 
methods, will contribute substantially to our 
understanding of how communities responded 
to historical climatic changes.

Data Accessibility

All sequences are available on the BOLD (Smith 
et al. 2021a). Reference photos are available on 
FigShare (Smith et al. 2021b).
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