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Abstract

The capacity for sperm storage within the female reproductive tract occurs
widely across all groups of vertebrate species and is exceptionally well devel-
oped in some reptiles (maximum duration seven years) and fishes (maximum
duration >1 year). Although there are many reports on both the occur-
rence of female sperm storage in diverse species and its adaptive benefits,
few studies have been directed toward explaining the mechanisms involved.
In this article we review recent findings in birds and mammals in an effort
to develop hypotheses that could be translated into research applications in
animal breeding technologies. There are pockets of evidence to suggest that
the local epithelial cells, sometimes arranged as sperm storage tubules, can
respond to spermatozoa by producing heat shock proteins as well as provid-
ing an environment rich in antioxidants. Moreover, the local immune system
seems to tolerate the arrival of spermatozoa, while retaining the ability to
combat the arrival of infectious microorganisms.
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INTRODUCTION

The capacity for prolonged sperm storage within the female reproductive tract occurs widely
across all groups of vertebrate species. With the exception of bats, which can store spermatozoa
for several months, most mammals store spermatozoa for shorter periods (2–5 days in many
species, but up to 9 and 15 days in dogs and some marsupials, respectively). Some avian species
possess more effective sperm storage abilities that can support sperm fertility for several weeks,
and some reptiles and fishes have even improved upon this and can store fertile spermatozoa for
more than 1–2 years. The adaptive benefits of sperm storage (i.e., why does it happen?) have been
discussed previously (1) in the context of sexual selection and social systems, but until recently,
relatively few studies have been directed toward understanding and explaining the mechanisms by
which the female tract is able to promote sperm survival.

Attempts to store spermatozoa at body temperature in the laboratory, without resorting to
cryopreservation, typically reach their limit after two to three days. Nevertheless, diverse species
clearly have invented natural and highly effective solutions to this problem, and it is surprising
that despite many years of research the scientific community has been unable to match them. If
different species have evolved their own idiosyncratic solutions, multiple mechanisms should be
waiting to be discovered. However, if there is, in fact, only one simple and common mechanism
that is readily accessible to diverse groups of species, it follows that the mechanism should be
more easily discoverable in the laboratory. Although we recognize that studies on wild species
are usually neither practically nor ethically easy to undertake, there is clearly a huge and largely
unexplored field to be investigated. This review aims to examine the comparative literature on
sperm storage in nature in an attempt to identify clues about the possible modes of action and
thereby suggest potentially useful avenues of research that might translate into novel practical
approaches for sperm storage in vitro.

Detailed tables documenting sperm storage abilities in diverse vertebrate species have been
published previously (1–3) and therefore are not reproduced here. Instead, we represent roughly
the same information in Figure 1, where it has been combined with a simplified version of an
evolutionary tree showing how the various species groups are interrelated. The figure shows that
these relationships are far from straightforward and that sperm storage ability may have been
gained, lost, and regained during evolution. That it has not been gained once and then retained
permanently by a particular lineage underlines the principle that sperm storage mechanisms should
be amenable to elucidation, given the sophisticated analytical tools that are available today.

However, the evolutionary tree itself may provide a few basic clues when the microanatomy of
sperm storage is taken into consideration. The divergence of birds and mammals is estimated to
have occurred roughly 300 million years ago (4) and predates the divergence of birds and reptiles.
It is therefore perhaps instructive to see that sperm storage in the female reproductive tract of
birds, some reptiles, and some sharks (5) occurs largely within specialized sperm storage tubules
(SSTs); this is in contrast to the situation in mammals, which do not possess SSTs. However,
the lack of SSTs in most anuran amphibians [except Ascaphus truei (6, 7)] and the possession
of spermathecae, an alternative sperm storage structure, in the caecilians (8) are consistent with
the earlier divergence of the bird-reptile lineage from the amphibians. Many mammals have
managed short-term sperm storage largely without specialized tubules or spermathecae, although
sperm storage crypts have been reported in some mammalian groups, especially marsupials and
insectivores (9–11). In contrast with the situation in most mammals, some sharks have developed
an extraordinary capability whereby spermatozoa can be stored in the female reproductive tract
for more than a year (12). This has occasionally caused some confusion because it is also apparent
that sharks can reproduce by parthenogenesis in the absence of any male contact (13, 14).
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Mammals

Birds

Snakes

Lizards

Turtles

Amphibians (Caecilians)

Ray-finned fishes

Sharks

Crocodilians

Bats: 6 months

Up to 4 months

Up to 7 months

3 months to 7 years

1 month to 1.5 years

3 months to 4 years

5 months

Up to 10 months

Some species 1–2 years

Some marsupials: 15 days

Dogs: up to 9 days

Bulls, pigs, sheep, camellids: 36 h

Humans: up to 5 days

Figure 1
Highly summarized schematic diagram showing evolutionary relationships between groups of species and
durations of sperm storage in the female reproductive tract.

Although microanatomical similarities relevant to sperm storage can be discerned between
species and clades, sperm storage in the female reproductive tract has clearly developed in a variety
of directions. Many species, especially mammals, store spermatozoa in the vagina, cervix, uterus, or
oviduct, whereas birds and some reptiles typically possess blind-ended SSTs that maintain sperm
viability for variable periods prior to fertilization. These are not hard and fast rules, however. For
instance, some marsupials have evolved sperm storage crypts in the uterus and oviducts (15), and
some reptiles store spermatozoa in close apposition, but not attached, to epithelial cells (16, 17).
Moreover, although we commented upon sharks in general in the paragraph above, it should be
noted that, as a group, fishes present a bewildering array of mechanisms. These include direct
storage within ovarian follicles (18, 19), which are also the sites of fertilization, and even some
mating strategies that involve multiple copulations with immature females and subsequent sperm
storage until the females become mature and ovulate several months after mating (20, 21). These
observations indicate that whereas explaining sperm storage in terms of microanatomical consid-
erations has some value within related groups of species, it may be unwise to draw unwarranted
and oversimplified conclusions from highly divergent groups of species.

Descriptions of sperm storage in the female reproductive tract are almost invariably accom-
panied by morphological observations showing the spermatozoa within their storage sites. Many
of these reports include the application of traditional histological staining techniques in the ex-
pectation that they will provide explanatory information about the sperm survival mechanisms.
Staining methods such as the periodic acid–Schiff technique, which detects neutral mucopolysac-
charides and glycogen; the Alcian blue technique, which detects acidic mucopolysaccharides; and
the Sudan Black method for detecting lipids have been used in several histological studies [e.g.,
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of bats (22), sharks (5), rattlesnakes (23), and blue mouth rockfish (24)]. Although the epithe-
lial cells typically stain positively with these approaches, the outcome is relatively uninformative
because epithelial cells from many sources, e.g., the trachea and intestine, are also known to
produce these secretions. Enzyme histochemistry has also been used, and outcomes typically re-
veal the presence of acid phosphatase in epithelia; once again, this is so general that metabolic
inferences are unjustified. Although there is no doubt that the environment provided by these
epithelia must actively prolong the life of the spermatozoa, it is unfortunate that the older stud-
ies are relatively unhelpful in terms of mechanistic explanation. Ideas about spermatozoa being
sustained or nourished within the female reproductive tract are very common in the older litera-
ture, and in their time they would have seemed entirely logical. However, more recent advances
in sperm biology and physiology would tend to suggest that these views are too simplistic. A
more likely scenario is that the female reproductive tract provides a sophisticated environment
that interacts with the spermatozoa via signal transduction pathways, possibly reducing their ac-
tivity and protecting against harmful reactive oxygen species (ROS) and inappropriate immune
threats (25, 26).

PRELIMINARY INVESTIGATIONS USING CELL CULTURE

Despite predating the era of proteomics and genomics by several decades, a series of intriguing
experiments published by Ashizawa and colleagues between 1976 and 1985 (27–31) showed that
fowl sperm survival in vitro at 38◦C and 41◦C was improved significantly by coculture with a
variety of cell types of both reproductive [oviductal, shell gland, utero-vaginal junction (UVJ),
and HeLa cells] and nonreproductive BHK-21 (hamster kidney cells) origin. Remarkably, these
authors also tested the survival of ram, bull, and boar spermatozoa in the presence and absence of
the cultured cells and found that HeLa and BHK-21 cells prolonged the sperm survival two- or
threefold (29). Under the same conditions, fowl sperm survival time was considerably longer than
that for the mammalian spermatozoa (18–27 h for ram, bull, and boar spermatozoa compared with
120 h for fowl spermatozoa). Subsequent investigations revealed that cultured chick embryonic
skeletal muscle cells produce low molecular weight substances (<10 kDa) with the capacity to
prolong fowl sperm survival and motility in vitro (31). Parallel studies also showed that diffusible
molecules (>12 kDa) present in conditioned media obtained from hen oviductal cell cultures
could prolong the motility of chicken spermatozoa in vitro (32), although less effectively than the
cultured cells themselves.

Beneficial effects of homologous coculture systems, using epithelial cells and spermatozoa from
the same species, were also demonstrated in many studies undertaken in the same era (33, 34), thus
establishing the general principle that spermatozoa in culture survive best when in the presence
of somatic cells. Ashizawa’s studies are of special interest because they indicate a certain degree of
flexibility in terms of species specificity between epithelial cells and the support they provide to
the spermatozoa. The observation that both HeLa cells, which originated from a human cervical
cancer, and hamster kidney cells are able to prolong fowl sperm survival in culture leads to the
conclusion that the mechanisms involved may be ancient, predating the evolutionary divergence
of mammals and birds. Therefore, the biochemistry and physiology of SSTs in birds and reptiles
likely also share functional characteristics.

The advent of genomic and proteomic techniques has meant that more recent studies of sperm
storage have been better suited to functional interpretation. Therefore, we focus most of this
review on the detailed observations that have emerged in the past 10–15 years in domestic species,
drawing upon information from other species groups where appropriate.
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SPERM STORAGE IN BIRDS

There is a considerable body of evidence about the transport and fate of spermatozoa in both
domestic poultry (35–37) and wild birds (38, 39). After insemination, a selected cohort of high-
quality spermatozoa collects within SSTs situated close to the UVJ (for reviews, see References
40 and 41) and can remain in situ for several weeks before they eventually proceed toward the
oocytes for fertilization. When the SSTs are dissected and viewed by light microscopy, the live
spermatozoa are clearly visible (42). Comparative differences in sperm storage capacity between
species and breeds and the duration of storage have been attributed to the relative number of SSTs
present in the reproductive tract (43, 44). Experimental studies have shown that spermatozoa from
sequential inseminations do not mix but are segregated into different SSTs (37). This effect has
been implicated in the operation of sperm competition mechanisms but is only one of many factors
influencing relative fertility between individual males (45, 46).

The experiments cited above showing that avian sperm life span could be extended through
coculture with various epithelial cell types inferred strongly that the effects must be mediated by
somatic cell products. The specialized in vivo organization of epithelial cells into blind-ended
tubules would undoubtedly assist sperm storage by confining the diffusible products to the im-
mediate locality, therefore allowing the concentration of these products to be controlled and not
wasted. More recent genomic and proteomic studies have allowed some of these diffusible products
to be identified and significantly have shown that the colonization of SSTs by spermatozoa induces
their upregulation (25, 47–50). The molecules in question have so far been identified as avidin,
avidin-related protein-2, progesterone receptor, and transforming growth factor-β (TGF-β) and
its receptors. Tentative identification of upregulated molecules in a study of turkey insemina-
tion responses employing SAGE [serial analysis of gene expression (50)] included cytoskeletal
proteins, metabolic enzymes, membrane transport proteins, and heat shock protein 90 (hsp90).
Functionally, these observations point largely toward local immune suppression (TGF-β) and the
control of gene expression [progesterone receptors not only modulate steroid function but act
in tandem with many signaling pathway components and chaperone proteins, including hsp90
(51)]. In a separate study, insemination in chickens also caused upregulation of interleukin-1β

and lipopolysaccharide-induced TNF factor in the avian vagina (47), but explicitly not in the
oviduct. Although highly localized immune suppression may be required to prevent destruction
of spermatozoa in SSTs, immune function within the oviduct must be maintained to prevent mi-
crobial infections. Eleven avian β-defensins have been identified as functionally important within
the hen oviduct and vagina (52), and five different subtypes are upregulated in response to the
administration of lipopolysaccharide, which is considered to be a surrogate for bacterial infection.
Coincidentally, recent investigations of the human reproductive tract have shown that a specific
form of β-defensin (DEFB114), which also neutralizes lipopolysaccharide activity, supports the
prolongation of human sperm motility in vitro at 37◦C (53). Although these are independent
and unrelated observations, they suggest that future research into sperm survival might profitably
explore the role of defensins.

Although spermatozoa can be stored for prolonged periods in the avian SSTs, they are even-
tually required to escape the confinement of these narrow tubules and ascend the reproductive
tract toward the site of fertilization. Suggested sperm release mechanisms have attempted to
accommodate the view that the stored spermatozoa show continuous motility and would therefore
always tend to swim forward toward the blind end of the SST (54). This model, proposed by
David Froman, suggested that the SSTs maintain a continuous outflow of luminal fluid, and
therefore any reduction in sperm motility would sweep them out of the tubules. Other studies
have shown that flagellar activity during sperm storage in SSTs is actually reduced (55) but is
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then stimulated by the progesterone-induced upregulation of heat shock protein 70 (hsp70)
in the peri-ovulatory oviduct (56). The peri-ovulatory period is characterized by increased
concentrations of circulating progesterone, which has been identified experimentally as the signal
for sperm release (55). Progesterone injections cause sperm release within one hour from the
UVJ of laying hens, and the UVJ was shown to be rich in progesterone receptors. The motility
stimulation occurring around this time would be helpful not only for escaping the SSTs but
also for making progress toward the oocytes for fertilization. Sperm motility control in chicken,
turkey, and other avian spermatozoa has been a topic of wide research interest, partly because
they exhibit reversible, temperature-dependent motility suppression. These studies show that the
motility control is exerted via the interplay of flagellar protein kinases and phosphatases (57–59),
interactions with intracellular calcium, and phosphatidyl inositol 3-kinase signaling (60).

Even though theories of sperm-SST interactions no longer need to posit a role for continuous
outflow of luminal fluid, active water transport in SSTs seems to be very important, as evidenced by
the presence of aquaporins in the epithelial cells lining the SSTs (61). In addition, SST functions
such as sperm release are also likely to be controlled via neural factors. Immunohistochemical
studies have revealed that, like other regions of the oviduct, they are richly innervated (62) and
therefore subject to the influences of smooth muscle contraction and relaxation.

This discussion has summarized a great deal of recent research showing how sperm storage
in the avian female reproductive tract is modulated by the dynamic control of gene expression
under the influence of the endocrine system. Sperm motility is suppressed during storage and
then restored when needed for fertilization, whereas immune function has to be controlled in
a highly localized manner. Because sperm membranes are rich in polyunsaturated fatty acids
and therefore vulnerable to ROS-induced damage, the reproductive tract has also developed
antioxidant systems involving ascorbic acid, glutathione, and superoxide dismutase (63). These
interactions are summarized schematically in Figure 2. Research into the formulation of new and
effective avian sperm diluents for the artificial insemination industry should seek to capitalize on
all of this new knowledge.

SPERM STORAGE IN MAMMALS

Influences of the female reproductive tract on sperm storage and functionality have fascinated
biologists for many years, especially in the context of sexual selection and sperm competition
(64–66). The female reproductive tract appears to act as a gatekeeper that allows the passage of
only a small minority of spermatozoa out of the millions that are contained within ejaculates; the
criteria for selection are still controversial (67). Regardless of the sperm selection criteria, most
female mammals appear to possess an innate ability to collect and store several thousands of the
ejaculated spermatozoa for a few hours or days, especially if ejaculation preceded ovulation. Sites
of sperm storage in the female reproductive tract are species-dependent and include the vagina,
cervix, uterus, utero-tubal junction (UTJ), and oviductal isthmus (for reviews, see References 68
and 69).

ROS are widely recognized as important causes of in vitro–induced sperm damage (70), and
there is a long history of adding antioxidants such as glutathione (71), vitamin C (72, 73), and other
compounds to sperm extenders in an effort to improve sperm survival. Not surprisingly, oxidative
damage is also a potential problem for spermatozoa being stored within the female reproductive
tract, and mammals, like birds, apparently have evolved natural antioxidant mechanisms to combat
the problem. Superoxide dismutase (74) and glutathione peroxidase (75) are effective antioxidant
enzymes expressed in the bovine oviduct. Superoxide dismutase was also found in uterine flushings
obtained from female dogs (76) and exerted beneficial effects on sperm survival when incubated in
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Uterus

Vagina

Progesterone and hsp70
stimulate sperm release

c   Sperm release

Sperm proceed
toward the oocytes

Sperm stimulate 
new gene expression

hsp70
TGF-β and TGF-β receptors
Avidin and avidin receptor

a   Sperm arriving in SST preovulation

b   Sperm storage

UVJ

Figure 2
Diagram summarizing the main events that occur during sperm storage in the female reproductive tract of
birds. (a) After copulation, spermatozoa enter sperm storage tubules (SSTs) located at the utero-vaginal
junction (UVJ) of the reproductive tract. These are rich in antioxidants and provide an immunosuppressive
environment. (b) Spermatozoa stimulate de novo gene expression (TGF-β, TGF-β receptors, progesterone
receptor, avidin, avidin-related protein-2, interleukin 1-β, and lipopolysaccharide-induced TNF factor) by
SST epithelial cells. (c) Sperm release is stimulated by progesterone and heat shock protein 70 (hsp70),
whereupon the sperm continue their progress toward the oocyte.
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culture media. Similarly, human spermatozoa were protected from ROS-induced damage when
incubated with epithelial cell membrane proteins obtained from the Fallopian tube.

Species-specific sperm storage mechanisms have been moulded by anatomical sites of sperm
deposition, social mating systems, and physiological diversity, and it is not possible to regard all
mammals as a single group. Differences occur even between closely related species; for example,
temperate pipistrelle bats can store spermatozoa in the uterus over winter (22) when body tem-
perature falls to approximately 4◦C, but the tropical bat Scotophilus heathii stores spermatozoa over
winter when the body temperature falls only as low as 20–28◦C (77). A group of small carnivorous
Australian marsupials (Antechinus spp.) exhibit an extreme reliance on successful sperm storage for
their survival as a species. Mating is followed by the death of all males in the population (78, 79),
and the females sequester the spermatozoa in oviductal crypts for a short period prior to ovulation
and fertilization. Both female dogs (bitches) (80) and horses (81) can store spermatozoa if mating
occurs two to six days prior to ovulation.

The microanatomy of sperm storage reservoirs varies between species, involving the entrap-
ment of spermatozoa by viscous mucus inside the lumen of the reproductive tract, sequestration
within deep folds in the oviductal epithelium (82), alignment of sperm heads facing the epithelial
surface (22, 83, 84), and/or the capture of spermatozoa within uterine or oviductal crypts (85–87).
The spermatozoa often become physically bound to epithelial cells through interactions involving
oligosaccharides (88) and/or sulphated glycosaminoglycans (89, 90), and in the extreme case of the
little brown bat Myotis lucifugus, the sperm heads burrow deep into epithelial cell indentations (91).

Such considerable diversity means that it is far from easy to draw general mechanistic con-
clusions about sperm storage in the female reproductive tract. However, several investigations
of prolonged sperm survival showed that membrane fractions and protein extracts isolated from
oviductal epithelial cells (OEC) could support sperm viability in vitro (92–95). Efforts to identify
a subset of OEC membrane proteins that bound specifically to the surface of boar spermatozoa
(95) demonstrated the presence, among others, of a group of heat shock proteins [hsp70 kDa
1A, hsp90, hspA8 (formerly known as hsc70), and glucose regulated protein 78 (GRP78)]. Other
studies focused on bovine sperm-OEC interactions also identified GRP78 and hsp60 for their
sperm-binding ability (96, 97). Subsequent experiments on in vitro sperm survival in the presence
of recombinant hspA8 showed convincingly that this protein could extend the life spans of boar,
bull, and ram spermatozoa under culture conditions and even when added to sperm extenders
(93, 98, 99). HspA8 has been shown to exert its effects immediately upon contact with the sperm
plasma membrane by increasing membrane fluidity, as measured by fluorescent recovery and pho-
tobleaching (99). In this study, the membrane fluidization and protective effects were shown to
be (a) dependent on the presence of sperm plasma membrane cholesterol, (b) reduced by incuba-
tion in a capacitating environment, and (c) reversibly restored by depleting and then replenishing
membrane cholesterol through incubating spermatozoa with cholesterol-loaded cyclodextrins. In
addition, sperm exposure to hspA8 induced a decrease in mitochondrial activity.

The heat shock proteins are multifunctional molecules that occur in multiple taxonomic groups
and species, including bacteria, plants, and higher vertebrates. Moreover, hspA8 is an exception-
ally well-conserved member of the hsp70 family (100). Until relatively recently, it was believed
that mammalian heat shock proteins were exclusively intracellular molecules and that they were
present only in extracellular compartments in pathological conditions such as necrotic cell death.
However, extensive evidence now supports the view that stress proteins can be released under
nonpathological conditions and exert protective roles. For example, early research demonstrated
the transfer of hspA1A (hsp70) and hspA8 from adjacent glial cells to the squid giant axon (101)
and showed that the exogenous hspA1A enhanced the stress tolerance of the neuronal cells. Like
other members of the hsp70 family of chaperone proteins, hspA8 interacts with multiple targets
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through a mechanism that involves an ATP binding and hydrolysis cycle. Investigation of the
binding partners has yet to be undertaken in the context of sperm survival, especially as there are
some interesting hints that this would be a profitable line of research. For example, the survival
factor B-cell lymphoma factor 2 (Bcl-2), which is upregulated in epithelial cells of the UTJ during
sperm storage in the female S. heathii, and whose expression has also been detected in mouse
embryos (102) and bovine OEC (103), is one of hspA8’s molecular binding partners (104).

Because the oviduct is potentially vulnerable to risks of microbial infection, it has developed
immune mechanisms to protect itself (105). The spermatozoa represent nonself entities, and so
it is reasonable to suppose that they would be challenged and destroyed when they enter the
female reproductive tract. However, the situation is more complex than this. The immune sys-
tem is evidently modulated in favor of spermatozoa; for example, phagocytosis of spermatozoa by
polymorphonuclear leukocytes (PMN) in vitro is suppressed by acid glycoprotein-1, which is a
major acute phase immunomodulatory protein produced mainly in the liver (106), by a mechanism
that reduces superoxide production by PMN in the presence of spermatozoa. The complexity of
interactions between spermatozoa and uterine epithelial cells was highlighted in studies of the pig
reproductive tract, where it was apparent that a cohort of intact and noncapacitated spermatozoa
received protection from phagocytosis by PMN, while damaged, capacitated, and moribund sper-
matozoa were destroyed (26, 107–109). Sperm interactions with the reproductive tract are also
modulated by β-defensins, which are a group of antimicrobial peptides, some of which directly
affect sperm function (110).

As discussed above in relation to birds, it is apparent from studies in mares, mice, and pigs that
when spermatozoa enter the reproductive tract they induce changes in their own environment,
and it is significant that some of these changes are associated with sperm protection and survival.
Evidence from interactions between spermatozoa and cultured equine OEC first demonstrated
this effect, when the de novo synthesis of proteins was detected (111). Later genomic experi-
ments in mice (112) identified the upregulation of adrenomedullin and prostaglandin endoperox-
idase synthase-2 transcripts in response to the arrival of spermatozoa, and proteomic studies of
pig oviduct responses to spermatozoa detected the upregulation of approximately 20 proteins in
oviductal fluid (113, 114). A significant number of heat shock proteins are among the molecules
upregulated by the arrival of spermatozoa in the oviduct; in vitro studies of sperm-OEC inter-
actions showed that hsp90AA1, hspA5, and hspA8 were all upregulated within 3–6 h (115). One
important finding from this particular study was the requirement for physical contact between
spermatozoa and OEC. Upregulation of heat shock proteins was not induced if the spermatozoa
were prevented direct access to the OEC surface, which might explain the commonly observed
regular alignment of sperm heads against the oviductal epithelium in many mammalian species.

The direct interaction of spermatozoa and OEC has also been shown to reduce intracellu-
lar calcium concentrations in spermatozoa (86, 116, 117), thus helping to prevent capacitation
and the premature acrosome reaction, both of which curtail sperm survival. As with bird sper-
matozoa in SSTs, mammalian sperm motility tends to be downregulated within the oviductal
environment. Overstreet & Cooper (118) first observed this in rabbits, attributing the effect to
high local concentrations of potassium, but more recent research suggests that interactions with
OEC modulate the action of sperm flagellae through multiple signaling pathways involving adeny-
lyl cyclase, the control of protein phosphorylation, and phosphatidyl inositol 3-kinase signaling
(119–121). When porcine oviductal fluid collected from follicular phase reproductive tracts was
separated into two fractions (> and <100 kDa), the lower molecular weight fraction inhibited the
expected sperm motility stimulation (122) normally elicited by bicarbonate (123). This was consis-
tent with other studies showing inhibition of bicarbonate-induced boar sperm motility stimulation
by bovine recombinant hspA8 (124) and a soluble protein fraction derived from the apical plasma
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a b   Calcium reduced
 in sperm

c   De novo protein
 production by OEC

d   Progesterone increase
 at ovulation

1–2 days sperm storage: pigs, cattle, and sheep

Sperm
enter oviduct

Sperm released
from OECSperm bound to OEC

Capacitation inhibited

Figure 3
Diagram summarizing the main events that occur during oviductal sperm storage in pigs, cattle, and sheep. (a) Spermatozoa enter the
oviductal isthmus via the utero-tubal junction. (b) Some spermatozoa bind to oviductal epithelial cell (OEC) surfaces, whereupon their
motility and intracellular calcium concentrations are reduced; capacitation is also inhibited. (c) The direct contact between spermatozoa
and epithelial cells induces de novo gene expression and protein synthesis. Multiple proteins, including heat shock proteins, are
secreted into the oviductal lumen, where they protect sperm membranes and facilitate sperm storage. (d ) Increased peri-ovulatory
progesterone production induces spermatozoa to escape and resume their progress toward the oocyte(s).

membranes of OEC (125). These results are significant because oviductal fluid is so rich (39–
90 mM) in bicarbonate (126) that the spermatozoa would normally be expected to become ca-
pacitated and hyperactivated rather quickly, thus shortening their life span unless appropriate
counteractive influences existed. Oviductal fluid in mammals contains a highly complex mixture
of proteins that affect sperm survival, capacitation, and behavior (127), and studying individual
components, although informative, may not truly represent the situation in vivo. For example,
although oviduct-specific glycoprotein, also known as oviductin, stimulates both the acrosome
reaction (128) and sperm-oocyte binding, it has also been shown to reduce sperm motility and
has even been regarded as a functional mediator of negative sperm selection (129). A detailed
discussion of the individual oviductal proteins involved in sperm-oviduct interactions is outside
the scope of this review, and the reader is directed toward other recent reviews that have addressed
this issue (89, 130–132). Some of the significant aspects of sperm storage in domestic mammals
are summarized in Figure 3.

The dynamic interplay between oviductal cell secretions, sperm-OEC binding, ionic composi-
tion, and the changing circulatory steroid concentrations mediated by the ovaries creates multiple
opportunities for the subtle control of sperm behavior. There is considerable evidence that sperm
storage within the mammalian reproductive tract is not merely an adaptation that helps to optimize
the chances of sperm-egg interactions but is involved in sperm selection (reviewed in References 67
and 133). Ejaculated semen contains cohorts or subpopulations of spermatozoa that vary in many
respects, ranging from shape and size to DNA fragmentation status and responsiveness to signaling
molecules. The controlled storage and release of such sperm subpopulations over different time
frames may therefore be critically important in the determination of skewed paternity outcomes
following inseminations with mixed semen samples. Such situations are well known from studies of
sperm competition (134), cryptic female choice (135), and heterospermic insemination (136, 137).
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Sperm Storage in the Bat, Scotophilus heathii

In their review of reproductive delays, Orr & Zuk (134) identified 24 bat species that have been
reported to store spermatozoa for periods of <30 to 225 days; interestingly, their earliest citations
date from the 1930s and 1940s. Unfortunately, however, detailed mechanistic studies of delayed
ovulation and sperm survival have been carried out in only a single species, the greater Asiatic
yellow bat (S. heathii ). The insights gained from an extended research program on this tropical
bat are of significant interest, although it is recognized that they may not represent a universal
mechanism adopted by all bats that exhibit sperm storage within the female tract.

In S. heathii, spermatozoa are stored in the uterus, UTJ, and oviducts after mating in early
winter until ovulation takes place in late February or early March (138, 139). Prior to the sperm
storage period, the females increase their body mass by 150%, mainly owing to heavy accumulation
of white adipose tissue (140), and subsequently the ovaries produce high levels of the circulatory
androgens androstenedione and testosterone (141). These effects are believed to be responsible
for suppressing ovulation. In conjunction with the high androgen levels, the oviductal epithelia
express androgen receptors and androgen binding protein (142). The high androgen levels are
stimulated by enhanced insulin production by the ovarian thecal and interstitial cells (143) and
are accompanied by a decline in blood glucose and carnitine (77). The expression of glucose
transporters (GLUT3 and GLUT5) at the UTJ also declines during the sperm storage period, but
the concentration of carnitine and the expression of carnitine transporter (OCTN2) and hormone-
sensitive lipase at the UTJ increase (77, 144). These results suggest that sperm storage is enhanced
by decreasing the local glucose concentration and increasing the amount of free fatty acids.

The same research group (145) also showed that during sperm storage, the UTJ expresses
Bcl-2, which, together with a family of related cytoplasmic proteins, is a key regulator of apoptosis
(for reviews see References 146 and 147). In the context of sperm storage mechanisms, the Bcl-2
would be acting as a survival factor with antiapoptotic activity. Moreover, the Bcl-2 expression
is testosterone dependent and was reduced by the experimental administration of antiandrogen.
The same authors also showed that the UTJ expresses caspase 3, a proapoptotic factor (148), and
observed modulation of gene expression in relation to the sperm storage events.

The impressive body of work on sperm storage in S. heathii is an excellent example of the
benefits obtained by carrying out wide-ranging and integrated reproductive studies in a particular
species. The main lesson from this work is that instead of sperm storage mechanisms being viewed
as localized modifications within a specific region of the reproductive tract, the results emphasize
that the entire physiology of the female is involved. The pituitary and hypothalamus are classically
known to be involved in controlling responses to seasonality, and in this species the responses
include ovarian function, control of appetite, control of hibernation, and control of adipose tissue
function. It is not yet clear whether these adaptations have also been adopted by other bats, or
even by other sperm-storing taxonomic groups, such as reptiles; we must await the generation of
further research data.

CONCLUSIONS

What can we learn from comparative studies of sperm storage mechanisms? The most valuable
clues have come from studies of birds and a few mammals in which immune suppression, the
presence of antioxidant systems, and metabolic suppression are important. The de novo induction
and synthesis of heat shock proteins during sperm storage are now known to favor sperm survival
in mammals, but although this is probably also true in other taxonomic groups, there is insufficient
evidence to support this view. Reduced temperature, which is the cornerstone of sperm storage in
the artificial insemination industry, must be less important than we think because in vivo sperm
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storage often takes place at physiological temperatures. In terms of biotechnology, prolonging
sperm function is becoming increasingly important as new breeding paradigms emerge. Sperm
sexing by flow sorting produces two sperm populations of limited size, bearing the X and Y
chromosomes, respectively. These samples can be maintained at ambient temperature for a matter
of hours or can be cryopreserved if long-term storage is needed. Flow sorting currently has a
relatively low throughput, but as this technology becomes more efficient and larger sperm samples
are produced, the wide geographical distribution of nonfrozen samples will become increasingly
important. Keeping the spermatozoa alive and functional without subjecting them to cooling and
cold shock would allow breeding companies to trade over longer distances, even when using small
sperm numbers. The use of artificial insemination as an adjunct to conservation breeding programs
would also benefit from advances in such technologies, especially with respect to species for which
there is currently no reliable (or even unreliable) sperm cryopreservation method [e.g., wallabies
and koalas (149, 150)].

SUMMARY POINTS

1. Sperm storage in the female reproductive tract is widespread across many taxonomic
groups, including insects, fishes, amphibians, reptiles, birds, and mammals. However,
in some groups of species the ability to store spermatozoa appears to have evolved,
disappeared, and then been regained. This suggests that, in principle, the underlying
processes actually exist in most species but must be coordinated appropriately for sperm
survival to be enhanced.

2. Some birds and reptiles have evolved microanatomical adaptations of the female re-
productive tract known as sperm storage tubules. These are microscopic, blind-ended,
epithelial-cell-lined tubules that are large enough to accommodate groups of spermato-
zoa. The spermatozoa are usually arranged inside the tubules with their heads pointing
toward the blind end, and they remain in place between the time of copulation and the
peri-ovulatory period. The sperm storage tubules are rich in antioxidants that would
assist with prolonged sperm survival.

3. Some studies have shown that sperm release from the sperm storage tubules coincides
with increased progesterone production around the time of ovulation. Sperm mobiliza-
tion is also stimulated by the production of heat shock protein 70 around the time of
ovulation.

4. Significantly, when the spermatozoa reach the sperm storage tubules they stimulate de
novo gene expression (observed through a genomic study in turkeys). The nature of
the expressed genes is still poorly known but includes avidin, which is a biotin-binding
protein found in egg white.

5. Most mammals do not store spermatozoa for very long periods, but many species of
bat have nevertheless evolved this ability. Bat spermatozoa are not stored within sperm
storage tubules, but many become regularly arranged within the uterus, utero-tubal
junction, and oviducts, with their heads in close apposition to epithelial cells.

6. The mechanism of sperm storage has been studied in detail in one tropical bat species
(Scotophilus heathii ). Delayed ovulation over winter is accompanied by high androgen
levels, and the epithelial cells adjacent to the stored spermatozoa express the Bcl-2 gene,
which is known to enhance cell survival and inhibit apoptosis.
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7. Spermatozoa from other mammalian species also exhibit the intimate sperm–epithelial
cell apposition, and a few species have also evolved specialized epithelial crypts that
sequester the spermatozoa. In vivo studies in mice and in vitro studies of equine and
porcine oviductal cells have shown that interaction with spermatozoa stimulates de novo
expression of multiple genes, including several heat shock proteins.

8. Experimental studies have demonstrated that one particular 70-kDa heat shock protein
(hspA8) can be used to enhance sperm survival in vitro, even when added to semen
diluents at low (μg/ml) concentrations.

FUTURE ISSUES

1. The data gleaned thus far from studies of birds and mammals offer complementary
clues about the mechanisms of sperm survival that future researchers could exploit. For
example, de novo gene expression in response to spermatozoa occurs in both groups,
but although the outcomes in mammals have identified the importance of heat shock
proteins, there is very limited information about heat shock protein production by the
sperm storage tubules.

2. Understanding of the significance of heat shock proteins in mammalian sperm survival is
still at an early stage. Given the complex roles and interactions of these multifunctional
chaperone proteins, considerable technological and practical benefits likely would accrue
from testing sperm survival responses to combinations of heat shock proteins and their
binding partners.

3. Understanding the innate immune system in greater detail would be a fruitful direction
for future research. It is apparent that spermatozoa are treated as privileged cells in an
environment that is highly adapted to combat invasions of microorganisms.

4. Modulation of the immune response so that spermatozoa are destroyed instead of being
maintained would also be useful for the development of new approaches to contraception
and pest control.

5. Although it is technically and ethically difficult to study the molecular and physiologi-
cal mechanisms of sperm storage in wild species, such as snakes, crocodiles, sharks, and
turtles, some of these species would provide invaluable clues. Although research op-
portunities are mostly opportunistic, it is feasible to use modern immunohistochemical
methods for the localization of key proteins and peptides in thin sections from formalin-
fixed tissues. The main obstacle here is the establishment of good working relationships
with biologists who work regularly with such species.
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18. Vila S, Sàbat M, Hernandez MR, Muñoz M. 2007. Intraovarian sperm storage in Helicolenus dacty-
lopterus dactylopterus: fertilization, crypt formation and maintenance of stored sperm. Raffles Bull. Zool.
14(Suppl.):21–27

19. Chiarini-Garcia H, Vieira FO, Godinho HP. 2014. Morphofunctional changes of female germinal
epithelium to support spermatozoa along the annual reproductive cycle in an inseminating catfish
(Trachelyopterus galeatus, Auchenipteridae). J. Morphol. 275:65–75

20. Warner RR, Harlan RK. 1982. Sperm competition and sperm storage as determinants of sexual dimor-
phism in the dwarf surfperch, Micrometrus minimus. Evolution 36:44–55

21. Darling JDS, Noble ML, Shaw E. 1980. Reproductive strategies in the surfperches: multiple insemination
in natural-populations of the shiner perch, Cymatogaster aggregata. Evolution 34:271–77

22. Racey PA, Potts DM. 1970. Relationship between stored spermatozoa and the uterine epithelium in the
pipistrelle bat (Pipistrellus pipistrellus). J. Reprod. Fertil. 22:57–63

23. Almeida-Santos SM, Salomao MG. 1997. Long-term sperm storage in the neotropical rattlesnake Cro-
talus durissus terrificus (Viperidae: Crotalinae). Jpn. J. Herpetol. 17:46–52
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