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1  | INTRODUC TION

The role of geography in the generation of biological diversity has 
been central to the development of evolutionary theory, including 
Darwin's focus on the Galapagos Islands and Wallace's studies of 
the Sahul and Sunda Shelves. Comparative phylogeography (e.g., 
Bermingham & Avise, 1986) developed as a modern manifestation 
of this interest and was the focus of a recent colloquium (Avise, 
Bowen, & Ayala, 2016) that addressed the current limitations, and 
future prospects of the discipline. Several papers that emerged from 
that colloquium issued a call for the development of trait‐based ap‐
proaches for phylogeography to move forward (e.g., Papadopoulou 

& Knowles, 2016; Riddle, 2016; Zamudio, Bell, & Mason, 2016), 
echoing earlier studies that integrated traits into phylogeography 
(e.g., Paz, Ibáñez, Lips, & Crawford, 2015).

Concurrent with this colloquium, Espíndola et al. (2016) in‐
troduced a supervised machine‐learning approach using random 
forests (RF) (Breiman, 2001) that integrates comparative phyloge‐
ography with distributional and climate data housed in publicly avail‐
able databases such as GBIF and WorldClim (Fick & Hijmans, 2017). 
The method of Espíndola et al. (2016) uses these geospatial data as 
predictor variables to develop a classifier that permits predictions to 
be made about the nature of genetic variation (e.g., the presence or 
absence of cryptic diversity, as indicated by deep genetic divergence 
or phylogeographic breaks) in taxa that have little to no genetic data 
yet available. Specifically, an existing comparative phylogeographic 
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Abstract
Predictive phylogeography seeks to aggregate genetic, environmental and taxonomic 
data from multiple species in order to make predictions about unsampled taxa using 
machine‐learning techniques such as Random Forests. To date, organismal trait data 
have infrequently been incorporated into predictive frameworks due to difficulties 
inherent to the scoring of trait data across a taxonomically broad set of taxa. We re‐
fine predictive frameworks from two North American systems, the inland temperate 
rainforests of the Pacific Northwest and the Southwestern Arid Lands (SWAL), by 
incorporating a number of organismal trait variables. Our results indicate that incor‐
porating life history traits as predictor variables improves the performance of the 
supervised machine‐learning approach to predictive phylogeography, especially for 
the SWAL system, in which predictions made from only taxonomic and climate vari‐
ables meets only moderate success. In particular, traits related to reproduction (e.g., 
reproductive mode; clutch size) and trophic level appear to be particularly informa‐
tive to the predictive framework. Predictive frameworks offer an important mecha‐
nism for integration of organismal trait, environmental data, and genetic data in 
phylogeographic studies.
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data set is used as the training data set to build the classifier, and, of 
the various supervised machine‐learning options available, RF per‐
mit an assessment of the importance of predictor variables in the 
predictive function.

In its original version, the predictive phylogeographic approach 
of Espíndola et al. (2016) used a machine learning framework to 
predict whether or not unsampled species were likely to harbour 
cryptic diversity, which was defined originally as pre‐Pleistocene 
divergence across a geographic barrier. Since the Espíndola et al. 
(2016) Pacific Northwest training data set included two woody 
plants, a mammal, three amphibians, and two terrestrial inverte‐
brates, life history traits that could be coded across all included 
species were difficult to identify. To address this shortcoming, tax‐
onomic categories served as a proxy for life history traits and were 
used with occurrence records for species endemic to a particular 
region or ecosystem as observations to be classified. Predictive 
accuracy was reasonably good in Espíndola et al. (2016) and the 
predictive phylogeographic framework remains ideally suited to 
incorporation of trait data as predictor variables, particularly for 
comparative phylogeographic investigations that are more taxo‐
nomically focused.

Although many current comparative phylogeographic data sets 
are taxonomically restricted, for example to a regional avifauna (e.g., 
Kirchman & Franklin, 2007), or to regional anurans (e.g., Freilich et al., 
2016), cross kingdom studies (e.g., Carstens, Brunsfeld, Demboski, 
Good, & Sullivan, 2005; Hewitt, 1996; Sérsic et al., 2011) and syn‐
theses (e.g., Médail & Diadema, 2009; Soltis, Morris, McLachlan, 
Manos, & Soltis, 2006) are beginning to accumulate. The broad 
taxonomic sampling of such studies leads to inherent difficulties 
related to the comparison of genetic variation, but model selection 
and species‐specific simulations represent powerful tools to test 
ecosystem‐wide hypotheses (e.g., Carstens et al., 2005; Carstens & 
Richards, 2007) and make species‐specific predictions (e.g., Ruffley 
et al., 2018; Smith, Ruffley, Tank, Sullivan, & Carstens, 2017), en‐
abling such cross‐kingdom comparisons. Along with simulations and 
model comparison, the use of the predictive approach provides an 
invaluable strategy for the integration of trait data into comparative 
phylogeography because such data are often available even in taxa 
for which no genetic data have yet been collected.

In the current paper, we expand the approach of Espíndola et 
al. (2016) and incorporate functional traits as predictor variables in 
order to integrate life history explicitly into predictive phylogeogra‐
phy. The challenge in doing so for a taxonomically broad compara‐
tive data set is to identify traits that may influence the geographic 
structure of genetic variation and are available and scorable across 
plants and animals. Traits that we integrate here include aspects of 
diet, life stage at dispersal, mode of dispersal, presence or absence 
of selfing, reproductive output, and maximum body size. Including 
these variables improves the predictive ability of the RF predictor 
and, more importantly, allows us to make inferences regarding the 
association of functional traits with geographic patterns of genetic 
variation, thereby demonstrating the applicability of machine learn‐
ing in biodiversity studies.

2  | MATERIAL S AND METHODS

2.1 | Random forest classifier

Of the many supervised machine‐learning approaches available, 
we focus on the ensemble classifier inherent in RF (Breiman, 2001), 
which uses collections of decision trees to classify observations 
based on a series of predictor variables. Details of our use of this 
method are provided in Table 1. First, we use existing phylogeo‐
graphic studies (see below) as a training data set (i.e., reference taxa). 
Here, each observation (georeferenced occurrence records for the 
reference taxa) was classified based on whether it is from a taxon 
that exhibits or does not exhibit a particular deep phylogeographic 
break between disjunct populations (i.e., cryptic diversity; step 1, 
Table 1). That is, the presence or absence of cryptic diversity is the 
response variable (i.e., the feature we seek to predict). Inferences 
as to whether or not taxa harboured cryptic diversity were based 
either on results from Approximate Bayesian Computation (ABC) 
and BEAST analyses, or on results from previous studies (details in 
Espíndola et al., 2016).

In step two (Table 1), we use RF in an attempt to use all the 
information in the data and we grow multiple classifiers (i.e., mul‐
tiple decision trees) using a bootstrap aggregating (bagging) ap‐
proach. Two thirds of observations are randomly assigned to be 
used as input data to construct decision trees; the remaining third 
is called the out‐of‐bag (OoB) sample and is used as an internal val‐
idation to assess accuracy of the emergent classifier. At each split 
(i.e., node) in each decision tree, a random subset of the predictor 
variables is chosen. From among this set of variables, the one that 
best partitions the observations between classes is selected. This 
process is repeated and nodes are added to decision trees until all 
observations are classified (step 2C, Table 1). Whereas individual 
decision trees may provide poor predictions (i.e., high OoB error 
rates), the ensemble classifier obtained from a collection (i.e., a 
forest) of random trees has been shown to be very accurate in 
many applications. Furthermore, the proportion of decision trees 
in the forest that classify an observation into a particular category 
(i.e., the proportion that classify an occurrence record as being 
from a taxon that harbours cryptic diversity) provides a measure 
of strength of inference. For more information, an excellent review 
of random forest classification is provided by Liaw and Wiener 
(2002).

2.2 | Study systems and predictor variables

2.2.1 | Pacific Northwest of North America

Following Espíndola et al. (2016), we use two model systems. First 
is the disjunct rainforest of the Pacific Northwest of North America 
(PNW) (e.g., Brunsfeld, Sullivan, Soltis, & Soltis, 2001; Carstens et 
al., 2005). The PNW supports the world's greatest extent of tem‐
perate coniferous rainforests (Franklin & Dyrness, 1973), and this 
ecosystem occurs in two distinct bands: one along the Coast and 
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Cascades Ranges and a disjunct inland segment in the northern 
Rocky Mountains of Idaho, Montana, and British Columbia (e.g., 
DellaSala et al., 2011; see figure 1a in Espíndola et al., 2016). The 
presence of disjunct populations of several conspecifics or puta‐
tive sister‐species pairs was the focus of the predictive approach 
developed by Espíndola et al. (2016). The RF classifier they de‐
veloped had very high accuracy (98.78% overall accuracy) in pre‐
dicting the presence or absence of cryptic diversity across this 
disjunction when environmental variables, along with taxonomy 
as a proxy for life history traits, were used as predictor variables. 
We include here the same seven taxa and add five other mesic for‐
est disjuncts that have been recently examined: robust lancetooth 
snails (Haplotrema vancouverense) (Smith et al., 2017), three spe‐
cies/complexes of taildropper slugs (Prophysaon andersoni, P. du-
bium, and P. vanattae/P. humile; Wilke & Duncan, 2004; Smith et 
al., 2018) and red alders (Alnus rubra) (Ruffley et al., 2018). This 
resulted in a total of three species/species complexes classified as 
cryptic and nine classified as noncryptic.

Here, we used occurrence data from Espíndola et al. (2016), along 
with occurrence data from Smith et al. (2018), Smith et al. (2017) 
and Ruffley et al. (2018). These data are composed of occurrences 
obtained from the literature, GBIF, and the field. Because GBIF also 
includes observations that correspond to living collections (e.g., bo‐
tanical gardens, private gardens, parks), GBIF occurrences were ex‐
cluded if they fell outside the focal range of the focal taxa (35° to 65° 
latitude, −160° to −100° longitude). This filter applied mostly to plant 
localities and was similar to that applied by Espíndola et al. (2016). 
We downloaded the bioclimatic variables from worldclim version 2 
on 8 June 2018 (Fick & Hijmans, 2017) and we collected trait data 
from different sources, such as public US Forest Service reports, 
NatureWeb, and the literature (Supporting Information Table S1). 
We included the following traits: trophic level (detritivore, herbivore, 
predator, primary), reproductive strategy (selfing, outcrossing, or 
both), dispersal stage (adult, juvenile, or embryo), dispersion means 
(wind, wind/water, and self), and maximum size of the organism.

2.2.2 | Southwest Arid Lands

Espíndola et al. (2016) also examined a set of taxa from compara‐
tive phylogeography of the Southwest Arid Lands (SWAL) for the 
presence or absence of a deep phylogeographic break across the 
Colorado River, which separates Baja Californian from the Sonoran 
Desert (see figure 1b in Espíndola et al., 2016). This system has 
played a central role in the maturation of comparative phylogoeg‐
raphy (e.g., Riddle, Hafner, Alexander, & Jaeger, 2000; Zink, 2002), 
and we follow Espíndola et al. (2016) in using 14 amphibian, bird, and 
mammal species/complexes as a reference set of taxa for predicting 
the presence or absence of this deep phylogeographic break. Their 
initial classifier achieved a moderate prediction accuracy (~69%) with 
environmental variables and taxonomy used as predictor variables.

As above, occurrence data were from Espíndola et al. (2016), 
and we downloaded the bioclimatic variables from worldclim ver‐
sion 2 on 8 June 2018 (Flick & Hijmans, 2017). We did not include 

TA B L E  1   The application of random forest to predictive 
phylogeography

1. Compile a reference data set where the response variable has 
been assessed (e.g., presence or absence of a deep phylogeographic 
split)

(a) Investigate phylogeographic patterns for several codistributed 
taxa using molecular data and classify each taxon according to a 
response variable. In this case, whether or not reference taxa are 
determined to harbour cryptic diversity is the response variable, 
as evaluated based on the presence/absence of a pre‐Pleistocene 
phylogeographic break. Sequence/genomic data may be 
generated de novo or mined from existing databases (i.e., 
Genbank). We use phylogeographic model selection to assess the 
response variable, in a comparative phylogeographic approach

(b) Compile occurrence records for all taxa in reference data from 
public databases (e.g., GBIF, Arctos, etc.), field work, and/or 
publications. These represent the observations that we wish to 
classify with respect to the response variable (i.e., as belonging to 
a taxon that harbours or lacks cryptic diversity)

(c) For each observation (occurrence record), we obtain and 
tabulate climate data (e.g., from WorldClim), taxonomic data, and 
trait data. These are the predictor variables

2. Apply random forest (following Breiman, 2001; Liaw & Wiener, 
2002) to build a predictive model (i.e., classifier)

(a) Randomly select 2/3 of the observations to train the model. 
This is the in‐bag sample

(b) The remaining random 1/3 of the observations are the OoB 
sample to be used for internal validation (i.e., used to calculate 
OoB error rates)

(c) Build a random decision tree to classify the training set

(i) From a random subset of predictor variables, select the best 
predictor variable (i.e., the predictor variable that most 
effectively splits observations into classes). Classify the 
training data based on the selected variable. This represents 
the first node in the decision tree

(ii) Grow the decision tree by adding predictor variables at 
random (i.e., new nodes in decision tree) until all observations 
in the training set are classified correctly

(d) Repeat steps 2a–2c many times to create a forest of random 
decision trees

(e) Classify each OoB sample using the forest of decision trees. 
This classifies an OoB observation, whose state is known (i.e., 
from a taxon that has or lacks cryptic diversity) allowing an 
assessment of OoB error. In addition, the frequency of inference 
(across the forest of decision trees) for each OoB observation 
provides an assessment of strength of that inference

(f) Assess variable importance

3. Cross validate model

(a) Leave all observations from a particular taxon out of the 
reference data

(b) Apply steps 2a–2e to build a classifier without using data for 
the omitted taxon

(c) Classify each occurrence record for the omitted taxon to assess 
accuracy of the classifier

(d) Repeat steps 3a–3c until each taxon has been used in cross 
validation

4. Make predictions about the value of the response variable in taxa 
that have yet to be assessed
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the species Melozone fuscus (formerly Pipilo fuscus) because, as cur‐
rently defined, it does not include populations in Baja California. We 
collected trait data from pantheria (Jones et al., 2009), eltontraits 
(Wilman et al., 2014), amphibiaweb (AmphibiaWeb, 2002), birdsna.org 
(Rodewald, 2015), the Encyclopedia of Life (EOL), animaldiversity.
org (Myers et al., 2018), and allaboutbirds.org (The Cornell Lab of 
Ornithology, 2018). We included the following traits: diet (five cat‐
egories, from eltontraits), nocturnality, body mass, clutch/litter size, 
and reproductive mode (oviparous or viviparous). Specific informa‐
tion on sources is given in Supporting Information Table S2. Where 
more than one value was available for a species or complex, the av‐
erage value was used.

2.2.3 | Pacific Northwest of North America training

We trained eight different RF classifiers, using bioclimatic and trait 
data as predictor variables and the presence or absence of cryptic 
diversity as the response variable in the r package randomforest 
(Liaw & Wiener, 2002). The eight classifiers differed in three ways: 
whether or not the taxon set was curated, whether or not the trait 
data were curated with respect to their effects on RF accuracy, and 
whether or not taxonomy was included as a predictor variable. For 
the first RF classifier, we considered all available data, including 
taxonomy (All Taxa, All Traits & Taxonomy). For the second RF clas‐
sifier, we omitted taxonomy (All Taxa, All Traits & No Taxonomy). 
Because including incorrectly classified taxa is likely to have sub‐
stantial impacts on the overall accuracy of a classifier, the RF classi‐
fiers built from a curated set of taxa may be more robust. Therefore, 
the third and fourth RF classifiers excluded two species/species 
complexes: Chonaphe armata and the Prophysaon vanattae/humile 
species complex (Curated Taxa & All Traits). These taxa have been 
difficult to classify as having or lacking cryptic diversity because of 
either incongruence between morphological and genetic data (Smith 
et al., 2018), or incongruence between validation approaches using 
the same genetic data (Espíndola et al., 2016), and therefore may 
mislead the RF classifier (Espíndola et al., 2016; Smith et al., 2018). 
The third and fourth RF classifiers were constructed with and with‐
out taxonomy, respectively (Curated Taxa, All Traits & Taxonomy; 
Curated Taxa, All Traits & No Taxonomy). Based on results from the 
comparisons between the full and curated taxon sets (see below), 
we only included the subset of the taxa for which we had confidence 
in the classifications (the curated taxon set) in the remaining classi‐
fiers. The final RF classifiers were constructed based on the results 
of assessments of variable importance. Based on these measures 
(see below), we chose to remove maximum size from the model, as it 
tended to mislead the classifier. We constructed these final classifi‐
ers both with and without taxonomy as a predictor variable (Curated 
Taxa, Curated Traits & Taxonomy and Curated Taxa, Curated Traits & 
No Taxonomy). Finally, we constructed a classifier using only biocli‐
matic variables and taxonomy (Curated Taxa, No Traits & Taxonomy) 
to compare to the Final Classifiers.

We assessed the accuracy of these RF classifiers using two 
approaches following Espíndola et al. (2016): OoB error rates and 

cross‐validation. OoB error rates were calculated using the r pack‐
age randomforest (Liaw & Wiener, 2002). To calculate cross‐valida‐
tion accuracies, we followed Espíndola et al. (2016); we ran separate 
RF analyses by dropping a single taxon from the reference set and 
building the classifier without that taxon. Occurrence records for the 
deleted taxon were then assessed using the classifier built without 
it and accuracy was calculated as follows: (a) accuracyoverall = 100 * 
(ntrue cryptic localities + ntrue noncryptic localities)/ntotal predicted localities), (b) accu‐
racycryptic = 100 * (ntrue cryptic localities/ntotal cryptic localities), (c) accuracy‐

noncryptic = 100 * (ntrue noncryptic localities/ntotal noncryptic localities).

2.2.4 | Southwest Arid Lands training

We trained four RF classifiers for the SWAL using bioclimatic and 
trait data as predictor variables and, again, with the presence or 
absence of cryptic diversity as the response variable in the r pack‐
age randomforest (Liaw & Wiener, 2002). These classifiers differed 
in whether or not taxonomy was included as a predictor variable 
and whether or not trait data were curated based on their effects 
on prediction accuracies. For the first RF classifier, we considered 
all available data, including taxonomy (All Traits & Taxonomy). For 
the second RF classifier, we omitted taxonomy (All Traits & No 
Taxonomy). Two classifiers were then constructed from a reduced 
set of variables, with two variables with negative impacts on predic‐
tive accuracies (see below) removed. We removed body mass and 
nocturnality, because, in combination, these two variables tended 
to mislead the classifier (see below). These final two classifiers were 
constructed both with and without taxonomy as a predictor variable 
(Curated Traits & Taxonomy; Curated Traits & No Taxonomy). Finally, 
we trained a classifier with only taxonomy and bioclimatic variables 
as predictor variables (No Traits & Taxonomy) for comparison. We 
assessed accuracy of the RF classifiers as above, using both OoB 
error rates and cross‐validation.

2.3 | Assessment of variable importance

We used three metrics to assess variable importance. First, we cal‐
culated the Mean Decrease in Accuracy (MDA) and Mean Decrease 
in Gini (GINI) metrics using the r package randomforest (Liaw & 
Wiener, 2002). MDA is calculated by permuting variable i, calculat‐
ing the OoB error rate, and comparing this error rate to the error rate 
when variable i is included in the model unpermuted. This reveals 
whether a particular variable increases the accuracy of the classi‐
fier and by how much, allowing for variables to be ranked based on 
their importance in the accuracy of the classifier. GINI measures the 
gain of node purity in splits for a given variable. Variables that are 
informative about classification should tend to split observations 
between, rather than within, classes, and node purity is a measure 
of whether a node splits between or within classes. The GINI coef‐
ficient measures how much each variable contributes to node purity, 
with lower values associated with higher node purity. Thus, variables 
with a higher Mean Decrease in Gini contribute more to node purity. 
Mean decrease in Gini and MDA are both contingent on the training 
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data set. For the problem addressed here, multiple observations per 
species are included in the training data set. When trait data are 
used, the values are consistent within a species and different among 
species. By virtue of relating all observations from the same spe‐
cies, a variable may seem important based on MDA or GINI, even if 
it offers very little information about similarities among species. To 
address this concern, we also calculated the decrease in prediction 
accuracy for each variable by repeating the cross‐validation step in 
which individual taxa were omitted from the classifier one at a time. 
In addition to permuting each taxon, we also permuted each of the 
trait variables. We calculated the overall accuracies and the cryp‐
tic and noncryptic accuracies and then compared these to the base 
measure of overall accuracy. For each variable, we calculated a mean 
decrease in prediction accuracies (averaged across taxa) when the 
variable was removed. These results were used to determine which 
predictor variables were included in our final RF classifier for each 
region. For the SWAL, these results generated uncertainty in how to 
build the most accurate classifier, so we also used a leave‐two‐out 
permutation approach, where we removed two variables at a time 
and measured the effect on prediction accuracy.

3  | RESULTS

3.1 | Classifiers

3.1.1 | Pacific Northwest of North America

Our final PNW data set had 2,734 observations that passed quality 
filters. The OoB error rates overall and for each class were zero; all 
OoB observations were correctly classified as cryptic or noncryptic, 
regardless of which variables and taxa were used to construct the RF 
classifier (Table 1). When taxonomy and all traits were used, predic‐
tion accuracies were 100%, regardless of which taxa were included. 
Without taxonomy and with all traits, overall accuracy was higher 
for the curated taxon set than for the full taxon set (97.7% vs. 97.0%; 
Table 2). Without taxonomy, and with the curated taxon set, cryptic 
prediction accuracy was 96.9% and noncryptic prediction accuracy 
was 98.4% using the full set of trait variables (Table 2). Based on 
this, the remaining analyses were conducted with the curated set of 

taxa. For the classifier built with a curated set of traits and a curated 
set of taxa, but without taxonomy, the overall prediction accuracy 
was 98.3%, the cryptic prediction accuracy was 97.0%, and the non‐
cryptic prediction accuracy was 99.7%. For the classifier built with 
a curated set of traits, a curated set of taxa, and taxonomy, predic‐
tion accuracies were nearly 100%, and for the classifier built with a 
curated set of taxa, no traits, and taxonomy, prediction accuracies 
were 100%.

In the cross‐validation analyses based on the curated set of 
taxa, curated trait data, and taxonomy, all taxa were classified cor‐
rectly (Figure 1, red densities). To explore how replacing or supple‐
menting taxonomy with trait data affected prediction accuracy, we 
compared the classifications from this classifier with those from 
the classifier that included only taxonomy and bioclimatic vari‐
ables (Figure 1, blue densities) and with those from the classifier 
that included curated taxa, curated trait data, but no taxonomy 
(Figure 1, yellow densities) to explore how replacing or supple‐
menting taxonomy with trait data affected prediction accuracy. 
For all species except Haplotrema vancouverense, accuracy did not 
change substantially. For H. vancouverense, prediction accuracy 
decreased when trait data were used, and decreased further when 
trait data were used without taxonomy. For this species, taxonomy 
contains information useful for predictions that is not captured by 
climatic variables or the traits that we used, and the trait data are 
misleading when analyzed in the absence of taxonomy. Likewise, 
for Microtus richardsoni, the inclusion of trait data decreases pre‐
diction accuracy, but not to the same extent as was observed for 
H. vanouverense.

3.1.2 | Southwest Arid Lands

For the SWAL, 71,832 observations passed quality filters. When 
all variables were used, and only taxonomy was omitted, OoB error 
rates were zero. However, overall prediction accuracies were low 
(40.6%; Table 3). By contrast, omission of nocturnality and body 
mass (with taxonomy included) resulted in OoB error rates of zero. 
This improved overall prediction accuracy increased to 95.1%, 
with the cryptic prediction accuracy increasing to 97.8%, and 
the noncryptic prediction accuracy increasing to 86.8% (Table 3). 

TA B L E  2   Accuracy of Pacific Northwest of North America random forest classifiers

Model
Overall OoBa  
error rate (%)

Overall prediction 
accuracyb  (%)

Cryptic prediction 
accuracy (%)

Noncryptic prediction 
accuracy (%)

All Taxa, All Traits & Taxonomy 0.000 100.00 100.00 100.00

All Taxa, All Traits & No Taxonomy 0.000 97.0 97.0 97.0

Curated Taxa, All Traits & Taxonomy 0.000 100.00 100.00 100.00

Curated Taxa, All Traits & No taxonomy 0.000 97.7 96.9 98.4

Curated Taxa, Curated Traits & Taxonomy 0.000 100.0 99.9 100.00

Curated Taxa, Curated Traits & No Taxonomy 0.000 98.3 97.0 99.7

Curated Taxa, No Traits & Taxonomy 0.000 100.00 100.00 100.00
aOoB error rate. bPredition accuracies are calculated as in Espíndola et al. (2016), as the ratio of correctly predicted localities to total predicted 
localities *100. 
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When only the curated traits and bioclimatic variables were used 
as predictor variables, OoB error rates were zero, overall predic‐
tion accuracy was 89.9%, cryptic accuracy was 97.6%, and non‐
cryptic accuracy was 72.0%. When only taxonomy and bioclimatic 
variables were used (No Traits), OoB error rates were 21%, and 
prediction accuracies were 62.5% (75.9% for cryptic and 21.4% 
for noncryptic).

Some differences were apparent in comparisons of classifications 
made from curated trait data with those from the classifier that included 
only taxonomy and bioclimatic variables. For two taxa (Melozone aber-
ti/M. crissalis and Oreothlypis ruficapilla/O. luciae), inclusion of trait data 
has a nearly neutral effect on prediction accuracy (Figure 2). For five 
taxa (Anaxyrus punctatus, Callipepla gambelii/C. californica, Chaetodipus 
baileyi, Dipodomys merriami, and Peromyscus eremicus/P. fraterulus) 

F I G U R E  1   Comparisons of accuracies as assessed by cross validations for PNW taxa between the classifiers built using climatic data plus 
taxonomy (blue), plus curated traits (yellow), and plus both curated traits and taxonomy (red). Classifiers are for the PNW taxa. The x‐axis is 
the probability of an observation being cryptic. The y‐axis is the density of occurrences with a given posterior probability. A “C” on the graph 
indicates that the taxon harbours cryptic diversity based on genetic data, and a “NC” on the graph indicates that the taxon lacks cryptic 
diversity based on genetic data
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inclusion of trait data increases certainty in the correct classification. 
For four other complexes, addition of trait data salvages the classifier 
from being inaccurate and permits correct prediction. Campylorhynchus 
brunnicapilus and Toxostoma leconti are predicted as harbouring cryp‐
tic diversity in classifications with only taxonomy (plus climate data), 
whereas the classifiers with trait data included correctly predict a lack 
of cryptic diversity (Figure 2). For Toxosotma cinereum/T. bindirei, the 
classifier with taxonomy (plus climatic data) incorrectly predicts a lack 
of cryptic diversity, whereas inclusion of trait data in the classifiers re‐
sults in correct prediction of cryptic diversity (Figure 2). For Auriparus 
flaviceps, the correct prediction of absence of cryptic diversity is only 
attainable with all three data types (climatic, taxonomic, and trait data) 
included. For Polioptila melanura/P. californica, the classifier with trait 
data led to an incorrect classification, but with taxonomy included, the 
presence of cryptic diversity is predicted accurately. Finally, for one 
complex (Ammospermophilus leucurus), predictions tended to be inac‐
curate regardless of whether or not trait data were used (Figure 2).

3.2 | Variable importance

3.2.1 | Pacific Northwest of North America

When taxonomy was included, this variable had the highest meas‐
ures of MDA and Mean Decrease in Gini, followed by the trait vari‐
ables (Figure 3). With taxonomy excluded, the trait variables had the 
highest measures of MDA and GINI (Supporting Information Figure 
S1). Based on our variable permutation measures of importance, all 
trait variables except maximum size had nearly neutral or positive 
effects on the accuracy of the RF classifier (Figure 3a). In the clas‐
sifier with curated traits, curated taxa, and no taxonomy, reproduc‐
tive mode (selfing vs. outcrossing) was the most important variable, 
followed by trophic level and life stage at dispersal as measured by 
MDA (Figure 3b). However, decrease in GINI indicated that trophic 
level had the largest effect on node purity, followed by life stage at 
dispersal, dispersion mode, and reproductive mode (Figure 3c).

3.2.2 | Southwest arid lands

Regardless of whether or not taxonomy was included in the classifier, 
clutch/litter size was the most important predictor variable based 

on MDA and GINI (Figure 4c,d). All other trait variables, except re‐
productive mode, ranked higher in importance than bioclimatic vari‐
ables based on MDA and GINI (Supporting Information Figure S2). 
Based on our variable permutation measures of importance, body 
mass and nocturnality in combination were strongly misleading the 
classifier (Figure 4a). Our final leave‐out‐one permutation measure 
of variable importance (when body mass and nocturnality were ex‐
cluded from the model) indicated that reproductive mode and clutch 
size were valuable predictors, and that diet may have a slightly nega‐
tive effect on predictive accuracy (Figure 4b).

4  | DISCUSSION

4.1 | Predictions

Incorporating life history traits as predictor variables improves the 
performance of the supervised machine‐learning approach to pre‐
dictive phylogeography introduced by Espíndola et al. (2016). Our 
approach, along with the regression model approach introduced 
by Paz et al., (2015), provides phylogeographers with a framework 
to integrate ecology and life history into the maturing discipline of 
comparative phylogeography (e.g., Papadopoulou & Knowles, 2016; 
Riddle, 2016; Zamudio et al., 2016). Our predictive framework has 
the potential to expand the importance and impact of comparative 
phylogeography and its relevance to other disciplines because it 
enables researchers to use existing databases to make predictions 
about the structure of genetic variation that may be present in taxa 
before genetic data are collected. In the two systems examined here, 
the use of cross validation, where n − 1 taxa are used to build the 
random forest classifier (where n is the number of taxa in the refer‐
ence data set), demonstrates the power of the approach to make 
predictions about a taxon that was not used in building the classifier 
(Figures 1 and 2). Furthermore, in using a collection of random deci‐
sion trees to classify a test observation (in this case an occurrence 
record), the ensemble approach provides some measure of strength 
of the prediction in the congruence of the prediction across the for‐
est of decision trees.

For the PNW system, prediction accuracy is high across classi‐
fiers and combinations of predictor variables. This is the case both 
for internal accuracy, as measured by low OoB error rates (Table 1), 

Model

Overall 
OoBa  error 
rate (%)

Overall 
prediction 
accuracyb  (%)

Cryptic 
prediction 
accuracy (%)

Noncryptic 
prediction 
accuracy (%)

All traits and taxonomy 0.00 40.6 85.7 26.3

All traits and no taxonomy 0.00 40.6 87.1 26.6

Curated traits and taxonomy 0.00 95.1 97.8 86.8

Curated traits and no 
taxonomy

0.00 89.9 97.6 72.0

No traits 20.8 62.5 75.9 21.4
aOoB error rate. bPredition accuracies are calculated as in Espíndola et al. (2016), as the ratio of 
correctly predicted localities to total predicted localities *100. 

TA B L E  3   Accuracy of Southwest Arid 
Lands random forest classifiers
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F I G U R E  2   Comparisons of accuracies as assessed by cross validations between the classifiers for SWAL taxa built using climatic data 
plus taxonomy (blue), plus curated traits (yellow), and plus both curated traits and taxonomy (red). Classifiers are for the SAL taxa. The 
x‐axis is the probability of an observation being cryptic. The y‐axis is the density of occurrences with a given posterior probability. A “C” on 
the graph indicates that the taxon harbours cryptic diversity based on genetic data, and a “NC” on the graph indicates that the taxon lacks 
cryptic diversity based on genetic data
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and in most of the cross‐validation analyses (Figure 1) in which clas‐
sifiers are built with each taxon successively deleted, and then used 
to assess accuracy of the classifier. In all taxa, addition of trait data 
improved the accuracy of the classifier (or was neutral) relative to 
the original implementation (Espíndola et al., 2016) that used only 

taxonomy and climate data. However, while the predatory snail 
Haplotrema vancouverense is still correctly predicted (to lack cryptic 
diversity) when taxonomy and traits are used in the classifier, it is not 
correctly predicted when taxonomy is omitted as a predictor vari‐
able (Figure 1). This suggests that for this taxon, there is important 

F I G U R E  3   Variable Importance for the PNW. (a) Mean decrease in accuracy based on our permutation approach. Negative values 
indicate that inclusion of a variable decreases prediction accuracies. (b) Mean decrease in MDA. (c) Mean decrease in Gini coefficient
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information captured by the taxonomy variable that is not captured 
by the trait data that we used.

The situation was somewhat different for the SWAL system. 
The original implementation (using only taxonomy plus climate data; 
Espíndola et al., 2016) had moderate prediction accuracy. By incor‐
porating informative trait data (clutch/litter size, reproductive mode, 
diet; Figure 4 and Supporting Information Figure S2), we improved 
overall accuracy considerably (Table 2, Curated Traits classifiers). In 
the cross‐validation analyses (Figure 2), inclusion of all three data 
types (traits, taxonomy and climatic data) had a positive or neu‐
tral impact on predictions for 12 of 13 taxa. Accurate predictions 
were not attained in any classifier for Ammospermophilus leucurus 
(Figure 2), whereas inclusion of trait data hampered predictions for 
Polioptila melanura/P. californica that were accurate with climate data 
plus taxonomy (Figure 2). For the Polioptila complex, it could be that 
data for additional traits would improve the classifiers, suggesting 
that it may be difficult to select trait data a priori.

4.2 | Variable selection and importance

The taxonomic breadth differed considerably in the two systems 
examined here; the PNW system includes plants, invertebrates, and 
vertebrates, whereas the SWAL data set includes only tetrapods. As 
a result, the suite of traits that we examined differed. In the PNW 
system, the most important traits to include were reproductive 
mode (selfing vs. outcrossing) and trophic level, with less importance 
identified for dispersal stage, maximum size, and dispersion mode 
(Figure 3). The ability to self has long been thought to relate to disper‐
sal ability (Baker's Law; Baker, 1955) and may play an important role in 
the recolonization of previously glaciated habitat, which is thought to 
have occurred in PNW rainforest endemics following the Pleistocene 
glacial cycles (e.g., Carstens et al., 2014). In the taxa studied here, all 
taxa capable of selfing lacked cryptic diversity and were inferred to 
have been recent dispersers to the inland rainforests. However, in 
general, predictions made by Espíndola et al. (2016) using only cli‐
mate and taxonomic data were quite accurate; there is little room for 
increasing prediction accuracy by adding trait data. Because of the 
taxonomic breadth, life history features that are difficult to elucidate 
across all the taxa, but that may nevertheless be important in struc‐
turing genetic diversity, may correlate with taxonomy.

By contrast, in the SWAL system, we identified a single trait, 
clutch size (Figure 4), as the most important trait (as measured by 
MDA). Propagule size is one of the variables affecting population 
size, which in turns affects the probability of survival of populations 
and species (e.g., Reed, O'Grady, Brook, Ballou, & Frankham, 2003), 
as well as influencing nucleotide diversity (Romiguier et al., 2014). 
Although body size is known to relate to dispersal ability in many 
groups (e.g., beetles, Dingle & Arora, 1973; mammals and birds, 
Sutherland, Harestad, Price, & Lertzman, 2000), it was misleading 
in both systems studied here. This may be due to the broad taxo‐
nomic scale at which our study was conducted, because the relation‐
ship between body size and dispersal ability differs widely across 
taxonomic groups. For example, although Sutherland et al. (2000) 

found a positive relationship between natal dispersal and body size 
in mammals and carnivorous birds, the same was not true for herbiv‐
orous and omnivorous birds.

4.3 | Traits and comparative phylogeography

The identification of factors that influence patterns of biodiversity 
has been a long‐standing goal of biogeography. In addition to distri‐
bution and diversity gradients, attention has focused on traits that 
influence genetic diversity within species, including life history traits 
in plants (e.g., Loveless & Hamrick, 1984) and propagule size animals 
(e.g., Romiguier et al., 2014). It has become increasingly clear that trait 
data, whether from existing databases or collected from natural pop‐
ulations, allow phylogeographers to integrate their work with other 
disciplines in the biological sciences (Zamudio et al., 2016), and a re‐
cent call has been made for phylogeographers to integrate traits into 
phylogeography in a more meaningful way. However, some authors 
have been using traits as a priori predictors of pattern for several 
years. For example, Alvarez et al. (2009) found that the ecological spe‐
cialization of alpine plants on specific substrate types explained their 
phylogeographic patterns in the Alps. More recently, Papadopoulou 
and Knowles (2015) identified an organismal trait, edaphic specializa‐
tion, and used it to predict which taxa were likely to have responded 
concordantly to fluctuations in sea level. Others have evaluated a set 
of organismal trait variables in a post‐hoc manner. For example, Paz 
et al. (2015) collected nine traits from 31 anurans and devised models 
consisting of combinations of traits that could be compared with a 
linear regression. In these examples, the authors asked if traits were 
associated with a particular phylogeographic pattern, either a single 
trait (Papadopoulou & Knowles, 2015) or several (Alvarez et al., 2009; 
Paz et al., 2015). However, both of these approaches are limited in the 
number of traits they can examine. In the approach of Papadopoulou 
and Knowles (2015), the number of traits that could be considered 
was limited due to the use of the hierarchical ABC framework to test 
the prediction of codivergence across a geographic barrier. In Alvarez 
et al. (2009), the number of traits analyzed was so small that they 
could apply standard statistical approaches. Paz et al. (2015) investi‐
gated a larger set of traits by selecting a set of 28 generalized linear 
models to compare via multi‐model inference techniques. However, 
these models represent only a small subset of the possible models, 
which may be a limitation in comparisons across broad taxonomic 
groups where researchers’ intuitions may be misleading and cause 
important trait variables to be missed. By allowing for the incorpo‐
ration of a potentially large number of trait variables into phylogeo‐
graphic studies, machine‐learning approaches such as the one used 
here offer a solution to this problem. They also dramatically expand 
the scope of comparative phylogeography because it is no longer lim‐
ited to codistributed taxa.

The use of supervised machine learning to detect variables that 
predict patterns of genetic variation enables comparative phyloge‐
ography to be expanded to continental or global scales. For exam‐
ple, Pelletier and Carstens (2018) examined 8,000 fungi, plants, and 
animals on a global scale to identify aspects of the species range 
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(i.e., total size, latitude, elevation) as important predictors of which 
species contain structured genetic variation. They did this by testing 
for isolation by distance and environment within each species and 
building a set of predictor variables that include organismal trait data 
related to metabolism along with other variables measuring aspects 
of the species range, habitat, and taxonomy. More detailed organis‐
mal trait data can be incorporated by limiting the taxon sampling. For 
example, Carstens, Morales, Field, and Pelletier (2018) investigated 
>300 species of bats to identify organismal traits associated with 
demographic responses to end Pleistocene climate change. Notably, 
since each of these supervised machine‐learning approaches utilize 
data from public databases such as gbif, worldclim, and genbank, the 
continued growth and refinement of these databases will expand the 
scope of predictive phylogeography.

5  | CONCLUSION: PREDIC TIVE 
APPROACHES IN BIODIVERSIT Y STUDIES

The inclusion of trait data into supervised machine‐learning ap‐
proaches can improve the accuracy of a classifier that can predict 
the presence or absence of deep phylogeographic splits (i.e., cryptic 
divergence) in uninvestigated taxa. We achieved good (in the SWAL 
system) to excellent (in the PNW) performance with respect to pre‐
diction accuracies. In particular, incorporation of trait data improved 
the accuracies produced by Espíndola et al., (2016), where only tax‐
onomy and climatic data were used, especially for the taxonomically 
restricted SWAL test data set. Alternatively, one could use such ap‐
proaches to test the effect of traits that have hypothesized a priori 
to impinge on the geographic structure of genetic variation (e.g., 
Alvarez et al., 2009; Paz et al., 2015).
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