Example of Punctuated Equilibrium in Snails
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Punctuated Equilibrium
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FIGURE 7.4 “Punctuated”equilibrium in
the evolution of fossil mollusks in Lake
Turkana Basin in eastern Africa.The diagram
depicts the reconstructed history of shell
morphology in several genera. Dotted lines
indicate inferred changes during periods

when no fossils have been recovered. Note

Upper member

I
STz

that most lineages exhibited long periods of
virtual stasis followed by rapid, substantial
change.The latter, punctuational events
often occurred either (1) virtually simultane-
ously in several different lineages, suggest-
ing major environmental changes, such as
shifts in lake level owing to climatic change
(confirmed by other evidence); or (2) in asso-
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ciation with speciation events, which often
left one species virtually unchanged while
the other species diverged substantially. : '
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Allopatric Speciation

http://wps.pearsoncustom.com/wps/media/objects/3014/3087289/Web_ Tutorials/18_A01.swf
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Allopatric Speciation: Vicariance Event
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FIGURE 9.6 The modern distribution of two closely related tree species, lodgepole pine
(Pinus contorta) and jack pine (Pinus banksiana). It is thought that divergence and the
development of these two species occurred allopatrically when Pleistocene glaciations split
the ancestral pine distribution into separate western and eastern populations.
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Allopatric speciation, founder event

Genes rare in original population are dominant in founding population

20 Pink 1 Pink
10 Red 3 Red

research.umbc.edu/~farabaug/biol100/overheads/lect17over.html
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Sympatric and Parapatric Speciation

sympatric: extensive overlap

a

a a

Biogeography

FIGURE 7.15 lllustration of sympatric and parap-
atric speciation.In sympatric speciation (A), two pop-
ulations of ancestral species a overlap extensively
when population differentiation begins and maintain
extensive contact throughout the speciation process
until new species (b and c) are recognized. Alterna-
tively, in parapatric speciation (B), overlap occurs only
along a narrow zone of contact between populations
of ancestral species a and throughout the course of
the speciation process. (After Brooks and McLennan
2002.)

parapatric: minimal overlap (partial geographic separation)

Lomolino et al. , 2006
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Parapatric Speciation

No extrinsic barrier to gene flow, but...

1. restricted gene flow within population
2. varying selective pressures across the
population range

“Although continuously distributed, different flowering times
have begun to reduce gene flow between metal-tolerant plants
and metal-intolerant plants. “

evolution.berkeley.edu/evosite/evo101/VC1dParapatric.shtml
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Example of Sympatric Speciation

« 200 years ago, flies only
on hawthorns

 then, introduction of
domestic apple

« females lay eggs on type
of fruit they grew up on;
males look for mates on
type of fruit they grew up
on

« restricted gene flow

« speciation

Gene flow has been reduced between flies that feed on different food wvarieties,
even though they both live in the same geographic area.

http://evolution.berkeley.edu/evosite/evo101/VC1eSympatric.shtml
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Example of
Sympatric
Speciation

FIGURE7.16 Examples of the variety
of body forms resulting from adaptive
radiation of cichlid fishes in Lake Tan-
ganyika in eastern Africa. (After Fryer
and lles 1972.)

Lomolino et al. , 2006
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Adaptive Radiation
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often rapid
speciation:

Lake Victoria:
100s of new
species in
<12,000 years

FIGURE 7.17 Examples of the variety
of head shapes, mouthparts, and feed-
ing habits resulting from adaptive radi-
ation of cichlid fishes in Lake Malawi in
eastern Africa. This amazing variation
reflects specialization in diet due to
natural selection to reduce competition
and exploit ecological opportunities.
(After Fryer and lles 1972.)

Lomolino et al. , 2006
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Adaptive Radiation

www.micro.utexas.edu/courses/levin/bio304/evolution/speciation.html
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Parallel and Convergent Evolution

parallelism convergence
descendants
red-yellow-purple and red-
blue-purple: convergence
to purple trait
ancestors

red-yellow-green: parallel changes to green trait

snailstales.blogspot.com/2005/07/sleeping-summer-away-2-converging-in.html

12

Prof. J. Hicke



Biogeography

Convergent Evolution

Marsupials
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FIGURE 9.8 An example of convergent evolution: mammals and ecologically similar
marsupials (after Baker and Garland, 1982).
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Parallel Evolution

(b)

Figure 43-13 PARALLEL EVOLUTION IN PORCUPINES.

(2) The American porcupine, Coendou prehensilis, and (b) the Old World porcupine, Hystrix africacaustralis, have a common
ancestor that lived 70 million years ago, before South America and Africa drifted apart. The porcupines have evolved
independently on separate continents to modern forms that are amazingly similar. This is an example of parallel evolution.

www.micro.utexas.edu/courses/levin/bio304/evolution/macroevol.html
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Coevolution

flowers pollinated by hummingbirds
* have more nectar and sugar
« are colored to attract the birds
* bloom during hummingbird breeding seasons

 have tubular flowers that force bills to pick up
pollen

* have little or no fragrance (hummingbirds
have poor senses of smell)

www.montereybay.com/creagrus/hummingbirds.html
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Higher rates of extinction for
a) lower population size
b) lower birth/death ratio
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FIGURE 9.11 Mathematical modeling results suggest how the duration of a species prior
to extinction is influenced by both population size and the birth rate/death ratio (after
MacArthur and Wilson, 1967).
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Background (normal) and mass extinctions
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Extinction and Speciation
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FIGURE 9.12 The relationship between mass extinctions and speciation (after Newell,
1967; Grant, 1991).
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Extinction and Speciation
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Lomolino et al. , 2006
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FIGURE 7.25 The “explosive” radiation of placental mammals during the Cenozoic, il-
lustrated by the rapid increase in number of families. This radiation occurred after the
K-T mass extinction event as mammals diverged and specialized to take advantage of
ecological opportunities presented by the extinction of dinosaurs and other groups
of previously dominant reptiles. (After Lillegraven 1972.)
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