Section 5: Habitats, Communities, Ecosystems

Reading: Ch 3 (coral bleaching, ocean
acidification, polar bear habitat); Ch 5

Learning outcomes

understand definitions related to ecosystems

+ explain how climate change affects biomes,
and what the impacts are to ecosystem
processes

+ discuss examples of how climate change
affects tropical, temperate, polar, freshwater,
and marine ecosystems, and what the
consequences of these changes are
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“Ecosystem consequences of wolf
behavioural response to climate”
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Climate defines biomes
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Cascading impacts of changes: Arid ecosystems
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Cascading impacts of changes: Arid ecosystems

Increases, decreases, and no Increase in shrubs
change in animal populations
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Evidence for biome shift:
Tree expansion at northern treeline
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Evidence for biome shift:
Tree expansion at northern treeline
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Recent shrub expansion in the Arctic

Figwre 1. Iy 6l im ancric Alaska. T8 and
e i 2 River (68 57.9' north, 155" 474" west). Dark objects wee in- Sturm et al,,

1102 igh and several i i il detected 2005

4 Aluskas whs

Pholograpio: (1948) US Navy, (2002} Ken Tupv.
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Uncertainty in projected future shifts of biomes:

HADCM3 A2

ECHAMS B1

IPCC, WG I, AR4
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Impact of biome shift on ecosystem functioning:
Arctic shrub expansion

Table 2. Key differences in properties between shrubby and nonshrubby tundra.
Properties Nonshrub tundra Shrub tundra
Srow Gepty Quration Shallower/ shorter Deeper/Ionger; more SHow runoff
Amedo Higher Lower
Summer sctivelayer depth Deeper Shallower (because of shading)
Summer active layer tempersture Warmer Cooler
Soil temperature Higher In summer, lower In winter Lower in summes, higher in winter
Nutrient (nitrogen) cycling Faster Slower
Carton Gycing Faster Slower
Cartbou forage 900ess 8nd quallty Higner Lower
Winter €O, fux Lower e
Summer CO, exchange Lower Mgher
€O, carbon dioxide.

Sturm et al., 2005
Climate Change Ecology 13 Prof. J. Hicke

Impact of biome shift on ecosystem functioning:
Arctic shrub expansion

Climate (Figwe 2)

warming (Figwe 1)
+ Shrub
density~+
+
Nutrient
availability {Fegure 5)
(Figure 8b) Snow
depth
+ +
Microbial Sturm et al.,
activity 2005

Soil
(Figures 7, 7b, and 8s) temperature

+  (Figures 43, 4b, and 6)

Figure 9. The snow-shrub-soil-microbe feedback loop

Climate Changs Evor ngbnsal on Sturm et al. 200”2‘. Prof.J. Hicke

Impact of biome shift on ecosystem functioning:
Arctic shrub expansion

more soil biological activity
projected in future

e 5. . petch. The s

Sturm et al., 2005
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Impact of biome shift on ecosystem functioning

New Mexico Environmental Gradient Approsimate & )
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Tropical ecosystems: cloud forests

Projected changes in clouds Effects of dry periods on
animals in cloud forest
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Temperate forest ecosystems
Shifts in range of ponderosa pine

Hannah, 2011
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Climate influences regional fire years

Historical Modern
(from tree rings) (from fire atlas)
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Figure 5. Interaction between spring and summer climate for
historical (left) and modern (right) regional fire years.
Circles are proportional to the degree of synchrony
(25 to 57% of sites for historical fires and 81 ha to
1,167,458 ha for the fire atlas)

For roughly the past four centuries, regional fire yeats were ones of
warm springs that were followed by dry summers (Figure 5).

Morgan et al., 2008
19
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Early snowmelt and longer, drier summers =>
more large fires

7-2003 versus 1970-1986 in Years with Early Spring

Change in Average Moisture Deficit Large Forest Wildfires
198 i
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Climate is a major driver

. e Canadian GCM
of Canadian wildfires
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Wildfire: Projections
based on future
climate change

increase in burned
area for 12 C
increase in
temperature

Littell et al., Ecological Applications, 2009;
National Academies, Climate Stabilization
Targets, 2010
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Projected future wildfire frequency
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Observed tree dieoff from climate change
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Drought: Texas drought in 2011

g I e

Dr. Ron Billings, Texas Forest Service

Climate Change Ecology 2 Prof. J. Hicke

Drought: Pinyon pine dieoff in Southwest in 2000s

Jemez Mts. near Los Alamos, October 2002 Photo: Craig D. Allen, USGS

Drought: Pinyon pine dieoff in Southwest in 2000s

Breshears et al., 2011

Climate Change Ecology 27 Prof. J. Hicke
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Drought: Tree dieoff in Southwest

Warming:

higher evapotranspiration | i

bark beetles | 2000s drought
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Breshears et al. PNAS, October 18, 2005, vol. 102, no. 42, 15144-15148, andgraphic from Neil Cobb

Forest Drought
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Drought: Tree dieoff in Southwest
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Drought: Tree dieoff in Southwest
Tree die-off effects on ecosystem processes and services

Roduction in food for

. Allered
disease.spreading
Lo Soil erosion rodents Vewhed
fiewood  Less pifionnut Increcse 3
3 harvest Waimer :
' micreciimate H State 1ree los:

microckmdte regulation |}
disease control 2
«ees @resion control + Roduced

Regulating Cultural | et

3/2/15

10



Benson Glacier
(courtesy USDA)

Eagle Cap, Wallowa
Mountains, OR

1920 (H. Richardson)

1992 (D. Jensen)

Andrew G. Fountain
Portland State University

Tropical glacier melt

Barnett et al.,
Nature, 2005
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Mountain Glacier Changes Since 1970
Effective Glacier Thinning (m / yr)
en.wikipedia.org/wiki/File:Glacier_Mass_Balance_Map.png
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Glaciers in the American West
1:24,000

8303 perennial snow
and ice features

688 km?
(266 miles?)
|
141
4.8
\
Andrew G. Fountain ) X
Portland State University “\ J | [[] s Forest Service lands
N £
A [] National Park Service lands

* Glaciers

Fraction of Glacier Area Lost since 1900

Andrew G. Fountain

Portland State University w\ / | ] s Forest Service lands
N £
L5 ) .
N [ National Park Service lands

*  Glaciers

x

x
Elevation 2061 m (Reynolds Mtn)

Elevation 1652 m (Lower Sheep Creek)

33883533830 +59383833133%

Courtesy of
Dr. Danny Marks {ARS)
& Anurg Nayak (USL)

3/2/15

12



Lower Spring Snowpack

Spring snowpack is projected to
decline as more winter
precipitation falls as rain rather
than snow, especially in warmer
mid-elevation basins

Snowpack will melt earlier with
warmer spring temperatures

baend mm=-|  April 1
w o on | Snowpack

Source: Climate Impacts Group, University of Washington, wwiw.cses.washington.edu/cig

timing of peak runoff

Shifts in Streamflow

« More winter rain — higher winter streamflows
« Warmer temperatures — earlier snowmelt and a shift in the

« Lower winter snowpack — lower spring and summer flows
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Fig. 1. Locations of the 76 forest
plots i the western Urited States
and southeestem Sritsh Colombia.
Red aod bloe symbols indicate
tespectively, plots wih haening e
decteasing mertaty rates. Symeol
size comesponds to aneual fractioeal
change ' mertatkty rate {smatiest
symbel, <0.025 year™"; Largest sy
el >0.100 year ™", the three foter
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Increase in tree mortality rates in old-growth forests

S (A) regionn, (B) ewasonut o, ) seem

van Mantgem et al., Science, 2009

Prof. J. Hicke
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Increase in tree mortality rates in old-growth
forests due to warming (stress, biotic causes)
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obser\(ed van Mantgem and Stephenson,
mortality Ecology Letters, 2007
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Warming leads to longer growing
season but reduced plant growth

Shallower snowpack =>

longer growing season length but
less water availability =>

less plant growth (dependence
on snow melt water) =>

NEP (g € m~ yr=)

less carbon storage (lower Net
Ecosystem Productivity)

SWE (om)

o 150 8 [iT) [T 9
Growing taasan langth [days]

Hu et al., Global Change Biology, 2010

Climate Change Ecology 7 Prof. J. Hicke
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Reliance of trees on snow melt water,
not summer precip in this area

2008 | 2006 2007 |
from summer
precip

growth

GPP (5 C m™ wook™)

Date
Fig. 7 Gross primary productivity (GPP) modeled using STPNET for 2005, 2006, and 307, Geay ancas reproseet snone contributed GPP
and black amws reprosent main contributed GPP Annual net oconysiem productivity INEP) for cach yeor & 38 ollows: 2005
(SSRCen “yr "), 2006 (104Cm *yr ), and 2007 98Cm yr 'L
Hu et al., Global Change Biology, 2010

Climate Change Ecology 2 Prof. J. Hicke

14



Salmon Impacted Across Full Life-Cycle

Sl Floods
Fish spawning Siet som
in freshwater ~ wonths
stream
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Source: Climate Impacts Group, University of Washington, www.cses.washington.edu/cig

Predicted response of bull

trout to warming

Rieman et al. 2007
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Trout species respond differently to warming

Brown b g
Lo -

[
Rainbow

Cutthroat m ;
\J :

fishandboat.comtrout htm;
fieldguide.mt.gov

Wenger et al. 2011

Climate Change Ecology 45 Prof. J. Hicke
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Species responses to air temperature, streamflow
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Brook Brown Rainbow Cutthroat

Wenger et al. 2011

Climate Change Ecology 16 Prof. J. Hicke

Predictions using future climate projections
Overall: 47% decrease by 2080
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Rainbow: negative T offset by flow changes that are beneficial
(spring, not winter, spawners)
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Vulnerability to Climate Change

Steelhead

Cutthroat
Trout

Mobility

“atostomids

Redband
Cyprinids Trout

>
>

Thermal Sensitivity

Black = fﬂ” Spawner Slide courtesy D. Isaak, USDA FS
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Cutthroat trout risk analysis that includes climate change

Factors influencing risk of losing cutthroat trout populations:
Adding climate change

i, vy
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Williams et al., NAJ Fish. Manag., 2009
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Cutthroat trout risk analysis that includes climate change

Factor 1: Summer temperature

Risk of higher summer
T: above 22° or 24°C
(depending on
population) after 3°C
warming

mmes o Gt P
e Gt Gl Tt Williams et al., NAJ Fish.

Manag, 2009
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Cutthroat trout risk analysis that includes climate change
Factor 2: Winter flooding

Benneville hcloeado River Winter precip-
wtthroat dominated watersheds

Change from snow- to
rain-dominated with
3°C winter warming

Williams et al., NAJ Fish.
Manag. 2009

Climate Change Ec: P &k o€ v wmer s i Seane tmgm of e s Y 1 o Bt Prof. J. Hicke
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Cutthroat trout risk analysis that includes climate change
Factor 3: Wildfire impacts

Intermediate

utthroat elevations may be
more susceptible to
changes in fire regime
(Westerling et al.,
2006)

Williams et al., NAJ Fish.
Manag, 2009
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Climate Change Ecc " %=

Cutthroat trout risk analysis that includes climate change

Composite risk = max of three climate risks
Bonneville subspecies: 73% in high risk
Colorado subspecies: 29% in high risk

More change from flooding, fire than from
summer warming

summer T winter flooding wildfire

Williams et al., NAJ Fish. Manag., 2009
Climate Change Ecology 53 Prof. J. Hicke

Cutthroat trout risk analysis that includes climate change
Westslope subspecies: 65% in high risk

More change from flooding, fire than from summer warming
T

Faums 6,—Composite climate chanpe risk Sor subwaienhods withis S hivarie mage of westshpe curest tout
Williams et al., NAJ Fish. Manag., 2009

Climate Change Ecology 54 Prof. J. Hicke
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Wildfire effects on stream temperature

[P -
8 ‘ T, « . .
X0 N “of Burned”: loss of shading
E ° from streamside vegetation
s
s R “Reorganized”: flooding,
B o4 R Buted debris flows following fires
z °a‘§z that redistribute sediment
§ 02 o.\ o and wood (and remove live
@ vegetation

£ N Unbumed e 4, g )

1000 '2"°E st ’T‘r‘“" 10 Changes in T lasted for
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Figure 4. Plot of predicied probability of exceedi
as a function of stream elevation for sites in nine streams
in the Boise River Basin (Figure 1) with differing wildfire
and channel disturbance history (closed arcles unburned
streams, open ircles burned streams, gray iriangles bumed
and reorganized streams)

Dunham et al, Ecosystems, 2007
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Cascading effects of changes in climate
through physical and biological systems

‘Warm water entering into Arctic -> changes in circulation ...with resulting impacts to
-> deflection of low-salinity water to west of Greenland.. marine ecosystems

3
)
re— -
Greene and Pershing, Science, 2007 You
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Coral bleaching

Hannah, 2011
Climate Change Ecology 57 Prof. J. Hicke
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Coral bleaching

FIGURE 3.2 1997 - 1998: A Deadly Year for Corals.
The right panel shows corals bleached in the EI Ni fi o event of 1997 — 1998. The left panels show a
single coral head pre- and postbleaching: (a) prebleaching, (b) bleached coral head, (c) partially
recovered coral head, and (d) fully recovered postbleaching. Left Source: Manzello et al., 2007; Right
Source: Courtesy U.S. National Oceanic and Atmospheric Administration.

Climate Change Ecology

Hannah, 2011
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Coral bleaching
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The pH scale
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Figure 11+ Diagram of the pH scale, abelad with the avesage pH values for some
Mo sohtions, InCuding seawster pi i defired o the negative kg of the
ydeogen ion concertiation in a soksion. Neotr el pH ia 7.0, icletion that huve g
values < 70 are ackdic, and those that have pH values > 7.0 are basic. The term ‘scean
sciddication’ refors ts the dirscton of change toward mese acidic ceediticrs with
ncresing atmospheric CO, concentrations. Like the Bichter scale, the pH scaie s
Jogarithenic. This means that api of 7 5 10 times mave ocidic than a ph of &
NOAA, State of Washington Report on Ocean Acidification, 2012
Climate Change Ecology 60 Prof. J. Hicke
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Ocean acidification

CONTEL O RGO SHOINCO;

o e

carbon water carbonate 2 bicarbonate
dioxide ion ions

consumption of carbonate ions impedes calcification

http://pmel.noaa. gov/co2files/oareaction.jog
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Ocean acidification

00, Time Scries in the North Pacific

1w
S el Recent changes in
atmospheric CO2, CO2 in

kw0 seawater, and pH

R

Figure 1.3 + Time serles of atmospheric CO; at Mauna Loa (in ppen: mole fraction

Indry air) and surface ocean pH and pCO; (uatm) at Ocean Station Aloha in

the subtropical North Pacific Ocean. Note that the increase in oceanic (O

over the last 19 years is he . in the NOAA, State of Washington Report on
statistical limits of the measurements. Mauna Loa data: Dr. Pietes Tans, NOAA/ Ocean Acidfication, 2012

ESRL (http//www.esel.noaa gov/gmdiccga/trends); HOTS/ALOHA data:

Dr. John Dote, University of Hawaii (http/hahana.soest hawail edu ).
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Ocean acidification

History and future of OA at the ocean surface

] o [ % 300
A30%addiy | m%?
30 piso a’
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Figure 1.4 - Schematic diagram of the changes in pH, CO,*, and COjupuany of the
surface oceans under a high (0, emission scenario out 1o 2100 (after Woll-Gladrow
etal., 1999). The pH has d about 0.1 (equivalent to a hyd

concentration increase of about 30%) since the beginning of the industrial era,

NOAA, State of Washington Report on Ocean Acidification, 2012
Climate Change Ecology 63 Prof. J. Hicke
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Arctic sea ice retreat

7 - Change in extent during winter
1979-2000 mean, 2 SD = .-
Average Monthly Arctic Sea ice Extent
January 1679 - 2013

Extent during each year

nsidc.org

Climate Change Ecology 64 Prof. J. Hicke

Arctic sea ice retreat
Extent in fall (minimum)

is nearly 50% $maller now than‘it'was in 1979

oceantoday.noaa goviwelcome htmi
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Arctic sea ice retreat

10792000 mdion minimeen

~— 2008 minkmum
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globalwarmingart.com
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Arctic sea ice retreat
Models do not predict retreat as fast as observed (worrying)

[ e
o i Catem Choervar ans 1o Madel Ty

AL T

multi-model
mean
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Figure 1. Arctic September sea e extent (x 10" km’) from ehservations (thick ral line) and 13 IPCC ARY chmate
models, logether with the malts-model ensemble mean (solkd black i) and standand deviation (dotied black line). Modils
with more thim one ensemble member are mdicaed with an asterisk. Inset shows 9 year rerming means

Stroeve et al., GRL, 2007
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Climate change effects on Antarctic food webs

\., «~ . €——— climate change
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FIGURE 5.17 Example of an Antarctic Fsod Web Hannah, 2011
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