Section 5. Habitats, Communities, Ecosystems

Reading: Ch 3 (coral bleaching, ocean
acidification, polar bear habitat); Ch 5

| earning outcomes

understand definitions related to ecosystems

« explain how climate change affects biomes,
and what the impacts are to ecosystem
processes

* discuss examples of how climate change
affects tropical, temperate, polar, freshwater,
and marine ecosystems, and what the
consequences of these changes are

Climate Change Ecology 1 Prof. J. Hicke



“Ecosystem consequences of wolf
behavioural response to climate”

(a) Higher NAO ->

deeper snow ->
hunting in larger %’
pack 3
£
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(c) larger 0%
packs, inc. kil £ 3
efficiency -> 5 &
fewer moose ﬁ =
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In (previous-year
moose density)

(b) larger pack
size -> inc. Kill
efficiency per
pack and per wolf

(d) fewer
moose ->
higher fir
growth
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Annual Precipitation (cm)
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Climate defines biomes

Whittaker Biome Diagram
Originally from RH Whittaker
Communities and Ecosystems
1975;

Modified from RE Ricklefs
The Economy of Nature

2000

Temperate
Grassland and Desert

0 10 — T10
Average Temperature (°C)

www.marietta.edu/~biol/biomes/biome _main.htm
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Climate defines biomes

M Oceans

B Tropical Seasonal Forest/Savanna
W Tropical Rain Feorest

M Temperate Rain Forest

M Temperate Daciduous Forast

M Taiga (Boreal Forest)

M Subtropical Desert

M Alpine

M Tundra
|| Polar Ice Cap

www.marietta.edu/~biol/biomes/biome_main.htm
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Cascading impacts of changes: Arid ecosystems
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Cascading impacts of changes: Arid ecosystems
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Evidence for biome shift:
Tree expansion at northern treeline
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Beck et al., 2011
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Evidence for biome shift:
Tree expansion at northern treeline
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Figure 4 (a) Tree cover (Hansen e al. 2003) compared to mean air temperature in

May—August in 1982-2007 for non-anthropogenic vegetated areas of interior

Alaska, i.e. the mainland north of the Alaska Range and south of the Brooks Range.

Only areas where gross productivity (Prs) shows a deterministic trend from 1982 to

2008 and where there were no wildfires between 1982 and 2007 are shown.

Histograms represent the distribution of (b) temperature and (c) tree cover and
include areas where no trend was detected.

Beck et al., 2011
Climate Change Ecology 8

Why does this figure provide
evidence supporting tree
expansion at northern
treeline?
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Recent shrub expansion in the Arctic

Figure 1. Increasing abundance of shrubs in arctic Alaska. The photographs were taken in 1948 and
2002 at identical locations on the Colville River (68° 57.9" north, 155° 47.4" west). Dark objects are in-
dividual shrubs 1 to 2 meters high and several meters in diameter. Similar changes have been detected 2005
at more than 200 other locations across arctic Alaska where comparative photographs are available.
Photographs: (1948) US Navy, (2002) Ken Tape.

Climate Change Ecology 9 Prof. J. Hicke
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Biomes 1961-1990

- Boreal Conifer Forest - Temperate Woodland

- Desert |:| Tropical Deciduous Broadleaf Forest
|:| Ice - Tropical Evergreen Broadleaf Forest
- Temperate Broadleaf Forest - Tropical Grassland

- Temperate Conifer Forest |:| Tropical Woodland

|:| Temperate Grassland - Tundra and Alpine

- Temperate Mixed Forest |:| Water

Slide courtesy M. Jennings, TNC Source: The Nature Conservancy Climate Change Initiative



Biomes 2071 - 2100, A1B Emission Scenario

- Boreal Conifer Forest - Temperate Woodland

- Desert |:| Tropical Deciduous Broadleaf Forest
|:| Ice - Tropical Evergreen Broadleaf Forest
- Temperate Broadleaf Forest - Tropical Grassland

- Temperate Conifer Forest |:| Tropical Woodland

|:| Temperate Grassland - Tundra and Alpine

- Temperate Mixed Forest |:| Water

Slide courtesy M. Jennings, TNC Source: The Nature Conservancy Climate Change Initiative



Uncertainty in projected future shifts of biomes:
LPJ model two climate change scenarios

HADCM3 A2
7 L
W 1 - Forest cover gain z o
B 2 - shrub/woodiand covergain -~
I 3 - Herbaceous cover gain
.A-Deseﬂamehot' ation
| 5 - Grass/tree cover 10ss
. 6 - Forest/woodland decline
|71 7 - Forest type change
ECHAMS B1
RS b ‘
R - IPCC, WG Il, AR4
Figure 4.3, Projected appreciable changes in lerrestial ecosysiems by 2100 ralative to 2000 as simulated by DGVM LPJ (Sitch et al, 2003; Gerfen
. 3t al, 2004) for Iwo SRES emissions SCananos (INakICenowc ar al, 2000) forcing two cimane modals.” @) HaaCMI A2, D) ECHAMS B (Luchr e &, .
Climate Change Ecology 2006; Schaphoff ot al, 2006). Changos are considered approciabie and ao anly shown 1 they axcoed 20% of tho ama of a simulatod grid col 500 Prof. J. Hicke

Figure 4.2 for further axplanations).



Impact of biome shift on ecosystem functioning:
Arctic shrub expansion

Table 2. Key differences in properties between shrubby and nonshrubby tundra.

Properties Nonshrub tundra Shrub tundra

Snow depth/duration Shallower/shorter Deeper/longer; more snow runoff
Albedo Higher Lower

Summer active-layer depth Deeper Shallower (because of shading)
Summer active-layer temperature Warmer Cooler

Soil temperature Higher in summer, lower in winter Lower in summer, higher in winter
Nutrient (nitrogen) cycling Faster Slower

Carbon cycling Faster Slower

Caribou forage access and quality Higher Lower

Winter CO,, flux Lower Higher

Summer CO, exchange Lower Higher

COZ, carbon dioxide.

Sturm et al., 2005
Climate Change Ecology 13 Prof. J. Hicke



Impact of biome shift on ecosystem functioning:

Arctic shrub expansion

Climate (Figure 2)
warming

(Figure 1)
+ Shrub
o density~-
+
Nutrient
availability (Figure 5)
(Figure 8b)
Snow
depth
+ +
Microbial
activity
Soil
(Figures 7a, 7b, and 8a) temperature

==  (Figures 4a, 4b, and 6)

Figure 9. The snow—shrub—soil-microbe feedback loop
g}l/msed on Sturm et al. 2001 IM

Climate Change Ecolio

Sturm et al.,
2005
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Impact of biome shift on ecosystem functioning:
Arctic shrub expansion

more soil biological activity
projected in future

Tundra with thin snow

Downwind edge of shrub patch

Figure 5. A shrub patch that has created a snowdrift in and downwind of the patch. The snow
on the tundra behind the patch was about one-fifth as deep as the drift. Photograph: Matthew
Sturm.

Figure 7. The Kuparuk Basin, showing a proxy index (number of
days of microbial activity) for subsurface winter biological activity
(a) under present conditions and (b) with projected increascs in
shrub growth. The index was computed by summing the number of
days of the winter that the soil surface temperature is at or above
~6 degrees Celsius (Taras et al. 2002). Note the strong latitudinal
Sturm et al. , 2005 gmdignr‘; in this index value. Snow depth increases afa function of
Climate Cha nge Ecol ogy 15 vegetation growth, leading to significant increases in the index

value, particularly in the middle and southern part of the basin,



Impact of biome shift on ecosystem functioning

New Mexico Environmental Gradient Approximate annual precipitation (mm yr-Y)
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Tropical ecosystems: cloud forests

Projected changes in clouds Effects of dry periods on
animals in cloud forest
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FIGURE 5.4 Monteverde Population Fluctuations Synched to Dry Days.

Twenty species of frogs and toads disappeared from the Monteverde cloud forest in Costa Rica (first
black bar) after an unusually long run of dry days (solid line). The golden toad (Bufo periglenes) was
locally endemic, so its disappearance represented a global extinction, perhaps the first extinction linked

Tropical cloud forests form where clouds intersact mountain slopes (top).
Under climate change or lowland land clearing, lowered relative humidity
at altitude means clouds will form higher (bottom), reducing the area of

nlersection with mountains and decreasing the extent of cloud forest, to climate change. Subsequent long dry spells have caused other frog population crashes since 1987
possibly causing loss of some of the many endemic species found there. (inset). Increasing frequency of dry spelis in cloud forest is linked to climate change through the lifting

In this schematic, increasing relative humidity and cloud condensation are cloud base effect. Ory periods appear to favor pathogenic growth of the fungus that is the ultimate cause
indicated by shades of orange. Source: Lawton ot al., 2001. of death in affected frogs. Reproduced with permission from Nature.

Hannah, 2011
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Climate Change Ecoloyy

Temperate forest ecosystems

Shifts in range of ponderosa pine

Winter freeze line — Dec, Jan and Feb
Ponderosa pine transition Comparing minimum temperature botwoen 1920 and 1993
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FIGURE 5.13 Map of Ponderosa Retreat in Sierras.

Ponderosa pine range has been reduced in the Sierra Nevada mountains of California since 1930.
Upslope movement of montane hardwoods (dominated by Quercus sp.) has been replacing the lower
range margin of ponderosa pine (left) while temperature has been increasing in the region (right). Upslope
loss in ponderosa pine is detected by comparing vegetation surveys from the 1930s (Wieslander VIM
survey) to modern vegetation maps. The area of retreat in freezeline (yellow, right) closely corresponds to
the area of pine loss (red-purple, left). Figure courtesy of Jim Thorne.
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Climate influences regional fire years

Historical Modern
(from tree rings) (from fire atlas)
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Figure 5. Interaction between spring and summer climate for
historical (left) and modern (right) regional fire years.
Circles are proportional to the degree of synchrony
(25 to 57% of sites for historical fires and 81 ha to
1,167,458 ha for the fire atlas)

For roughly the past four centuries, regional fire years were ones of
warm springs that were followed by dry summers (Figure 5).

Morgan et al., 2008
19
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Early snowmelt and longer, drier summers =>
more large fires

Change in Average Moisture Deficit Large Forest Wildfires
1987-2003 versus 1970-1986 in' Years with Early Spring
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BT e
90 -45 0 45 90
percent change scaled by forest area 200,000 ha 100,000 ha

Climate Change Ecology Westerling et al Science 2006, Running, Science 2006 Prof. J. Hicke



Climate is a major driver
of Canadian wildfires

Canadian GCM
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Wildfire: Projections
based on future
climate change

increase in burned
area for 12 C
Increase in
temperature
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Projected future wildfire frequency

Wildfire 2000-2100
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Gonzales et al., 2010
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Observed tree dieoff from climate change

Global forest cover
_| Other wooded regions

® Localities compiled through 2009 (summarized and listed in Allen et al, 2010)
O  Examples not induded in Allen et al, 2010, largely from post-2009 publications
[C] Broad areas described by particular post-2009 publications

IPCC AR5, WG 2, 2013
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Drought: Texas droughtin 2011

Dr. Ron Billings, Texas Forest Service
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Drought: Pinyon pine dieoff in Southwest in 2000s

Photo: Craig D. Allen, USGS




Drought: Pinyon pine dieoff in Southwest in 2000s

Breshears et al., 2011
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Drought: Tree dieoff in Southwest
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Drought: Tree dieoff in Southwest
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Drought: Tree dieoff in Southwest

Tree die-off effects on ecosystem processes and services

Reduction in food for
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Benson Glacier
(courtesy USDA)

Eagle Cap, Wallowa
Mountains, OR

1920 (H. Richardson)

1992 (D. Jensen)

Andrew G. Fountain
Portland State University



a 1978

Tropical glacier melt

Barnett et al.,
Nature, 2005

Figure 3 | Changes in the Qori Kalis Glacier, Quelccaya Ice Cap, Peru,
between 1978 (a) and 2002 (b). Glacier retreat during this time was
1,100 m (L. Thompson, personal communication). Photographs courtesy of

Climate Change Ecology L Thompsca. 3y Prof. J. Hicke



Mountain Glacier Changes Since 1970

14 1.2 1 08 06 04 02 0 02 04 06 08 1 12 14
Effective Glacier Thinning (m / yr)

en.wikipedia.org/wiki/File:Glacier_Mass_Balance_Map.png
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Andrew G. Fountain
Portland State University
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Fraction of Glacier Area Lost since 1900

Andrew G. Fountain
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Precipitation Type - Rain vs. Snow 1965-2005
Reynolds Creek Experimental Watershed

Still Shnow
Dominated

Elevation 1652 m (Lower Sheep Creek)
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Lower Spring Snowpack

Spring snowpack is projected to
decline as more winter
precipitation falls as rain rather
than snow, especially in warmer
mid-elevation basins

Snowpack will melt earlier with
warmer spring temperatures

(
,.

\
&

. o m April 1
%l"- a& B -100% 0in Snowpack

Source: Climate Impacts Group, University of Washington, www.cses.washington.edu/cig



Shifts In Streamflow

More winter rain — higher winter streamflows

Warmer temperatures — earlier snowmelt and a shift in the

timing of peak runoff

Lower winter snowpack — lower spring and summer flows
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Increase in tree mortality rates in old-growth forests

Fig. 1. Locations of the 76 forest
plots in the western United States
and southwestern British Columbia.
Red and blue symbols indicate,
respectively, plots with increasing or

decreasing

mortality rates. Symbol

size corresponds to annual fractional

change in

mortality rate (smallest

symbol, <0.025 year™?; largest sym-
bol, >0.100 year™?; the three inter-
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Fig. 2. Modeled trends in tree mortality rates for (A) regions, (B) elevational class, (C) stem
diameter class, (D) genus, and (E) historical fire return interval class.
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Increase in tree mortality rates in old-growth
forests due to warming (stress, biotic causes)

(a) All causes
0.020

0.015 1
obser\{ed van Mantgem and Stephenson,
mortality 0.010 1 Ecology Letters, 2007

0.005 -

0.000 .
(b) Stress and biotic causes

L 300 § Figure 1 Annual tree mortality rates from
o 0.020 @ 1983 to 2004 for 21 pe forest pl
= 2 3 to or 21 permanent forest plots
= N in the Sierra Nevada, California. The thin
. 2 0.015 1 250 Q@ '_ lid line re h 1 lity
Ilkely cause £z T > solid line represents the annual mortality rate
g = averaged among plots, with the thick solid
g 0.010+ - 200 qé) £ line showing the expected mortality rate
= o (x 2 SE, shaded area) from significant
3 0.005 7 -150 2 (P <0.05 models of the annual trend
c (Table 1). (a) Mean annual mortality rate
<C 0.000

for all causes of death increased at 3% per
year (Table 1). (b) Mean annual mortality
rate for stress and biotic causes increased at
3% per year (Table 1). Average water deficit
(dashed line), an index of drought (see text
for definition), predicted changes in the
stress and biotic mortality rate (Table 2). (c)
Mean annual mortality rate for mechanical

0.010 +

unlikely
cause oy

(mm yr™)

causes did not show a significant trend
(Table 1), although Precipy.. (dotted line),
an index of storm intensity (see text for

0.000 - . . . .
1984 1988 1992 1996 2000 2004 definition), predicted annual variability in the

Year mechanical mortality rate (Table 2).
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Warming leads to longer growing
season but reduced plant growth
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Hu et al., Global Change Biology, 2010
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Shallower snowpack =>

longer growing season length but
less water availability =>

less plant growth (dependence
on snow melt water) =>

less carbon storage (lower Net
Ecosystem Productivity)

Fig. 2 (a) Relationship between annual GSL and NEP for 9
years. A significant, negative relationship between GSL and NEP
(P=0.04, R*=047, NEP= —2.66 x GSL + 510.51) demonstrate
that longer growing seasons are correlated with lower annual
rates of carbon sequestration by the forest. Vertical error bars
correspond to 18% randomly generated NEP errors and hori-
zontal error bars correspond to error in calculating the start and
end of the growing season. (b) A significant, negative relation
ship between GSL and SWE (P=0.01, R*=061, SWE=
—1.08 x GSL + 223.87) demonstrates that years with a longer
growing season are correlated with less available snow melt
water. Horizontal error bars correspond to 1% instrument error.
NEF, net ecosystem productivity; GSL, growing season length;
SWE, snow water equivalent.
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Reliance of trees on snow melt water,
not summer precip in this area
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Fig. 7 Gross primary productivity (GPP) modeled using SIPNET for 2005, 2006, and 2007. Gray areas represent snow contributed GPP
and black areas represent rain contributed GPP. Annual net ecosystem productivity (NEP) for each year is as follows: 2005
(88gCm 2yr 1), 2006 (104gCm 2yr '), and 2007 (98gCm 2yr ).

Hu et al., Global Change Biology, 2010
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Salmon Impacted Across Full Life-Cycle
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Predicted response of bull

trout to warming
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800 m

Rieman et al. 2007
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Trout species respond differently to warming
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Species responses to air temperature, streamflow
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Predictions using future climate projections
Overall: 47% decrease by 2080
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Vulnerability to Climate Change
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Cutthroat trout risk analysis that includes climate change

Factors influencing risk of losing cutthroat trout populations:
Adding climate change

Persistence I Summer Temperature Winter Flooding Wildfire I
Mean Winter |
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FIGURE | .—Schematic showing how the current analysis of population persistence is influenced by climate change risk models
to produce an overall description of population risk,

Williams et al., NAJ Fish. Manag., 2009
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Cutthroat trout risk analysis that includes climate change

Factor 1: Summer temperature
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Cutthroat trout risk analysis that includes climate change
Factor 2: Winter flooding
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Cutthroat trout risk analysis that includes climate change
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Cutthroat trout risk analysis that includes climate change

Composite risk = max of three climate risks
Bonneville subspecies: 73% in high risk
Colorado subspecies: 29% in high risk

More change from flooding, fire than from
summer warming

summer T winter flooding wildfire

Williams et al., NAJ Fish. Manag., 2009
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Cutthroat trout risk analysis that includes climate change
Westslope subspecies: 65% in high risk

~ More change from flooding, fire than from summer warming
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FiGure 6.—Composite climate change risk for subwatersheds within the historic range of westslope cutthroat trout
Williams et al., NAJ Fish. Manag., 2009
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Wildfire effects on stream temperature
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Figure 4. Plot of predicted probability of exceeding 20°C
as a function of stream elevation for sites in nine streams
in the Boise River Basin (Figure 1) with differing wildfire
and channel disturbance history (closed circles unburned
streams, open circles burned streams, gray triangles burned
and reorganized streams).

Dunham et al., Ecosystems, 2007
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“Burned”: loss of shading
from streamside vegetation

“Reorganized”: flooding,
debris flows following fires
that redistribute sediment
and wood (and remove live
vegetation)

Changes in T lasted for
decades
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Cascading effects of changes in climate
through physical and biological systems

Warm water entering into Arctic -> changes in circulation ...with resulting impacts to
-> deflection of low-salinity water to west of Greenland... marine ecosystems
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Coral bleaching

Hannah, 2011
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Coral bleaching

FIGURE 3.2 1997 — 1998: A Deadly Year for Corals.

The right panel shows corals bleached in the El Ni A o event of 1997 — 1998. The left panels show a
single coral head pre- and postbleaching: (a) prebleaching, (b) bleached coral head, (c) partially
recovered coral head, and (d) fully recovered postbleaching. Left Source: Manzello et al., 2007; Right
Source: Courtesy U.S. National Oceanic and Atmospheric Administration.

Hannah, 2011
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Coral bleaching

Marshall, Schuttenberg, 2006

@ No bleaching @ Lowbleaching ' Moderate bleaching @ Severe bleaching @ Severity unknown
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Ocean acidification

More Battery acid The pH scale
acidic ‘ B pH = -log, [H]
Stomach acid, lemon juice
Vinegar, soda - r .
[H*] = 0.001 mol/L
2 pH=38
R AN il k
Neutral . T ey (H*] = 0,000001 moi/
Seawater (8.17) . H=8
Baking soda
'H ] = 0.000000001 mal/L
Milk of magnesia )
pH=9
More Household bleach
basic Sodium hydroxide

"Average global surface ocean pH

Figure 1.1+ Diagram of the pH scale, labeled with the average pH values for some
common solutions, including seawater. pH is defined as the negative log of the
hydrogen ion concentration in a solution. Neutral pH is 7.0, solutions that have pH
values < 7.0 are acidic, and those that have pH values > 7.0 are basic. The term ‘ocean
acidification’ refers to the direction of change toward more acidic conditions with
increasing atmospheric CO; concentrations. Like the Richter scale, the pH scale is
logarithmic. This means that a pH of 7 is 10 times more acidic than a pH of 8.

NOAA, State of Washington Report on Ocean Acidification, 2012
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Ocean acidification

carbon water carbonate 2 bicarbonate
dioxide ion ions

consumption of carbonate ions impedes calcification

http://pmel.noaa.gov/co2/files/oareaction.jpg
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Ocean acidification

CO, Time Series in the North Pacific
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Figure 1.3 « Time series of atmospheric CO, at Mauna Loa (in ppm; mole fraction

in dry air) and surface ocean pH and pCO, (patm) at Ocean Station Aloha in

the subtropical North Pacific Ocean. Note that the increase in oceanic CO;

over the last 19 years is consistent with the atmospheric increase within the NOAA, State of Washington Report on
statistical limits of the measurements. Mauna Loa data: Dr. Pieter Tans, NOAA/ Ocean Acidification, 2012

ESRL (http://www.esrl.noaa.gov/gmd/ccgg/trends); HOTS/ALOHA data:

Dr. John Dore, University of Hawaii (http://hahana.soest.hawaii.edu).
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Ocean acidification

History and future of OA at the ocean surface

: 50
- oH | 2000
- M30%adidity |
cor- - W16% [cO7]
8.14
- 30
=
8.0
- 20
co,
(3Q) -
7.9 e s - - 10
7.8 T T T T +0
1800 1900 2000 2100

Year
Figure 1.4 - Schematic diagram of the changes in pH, CO;%*, and COyqueous Of the
surface oceans under a high CO,emission scenario out to 2100 (after Wolf-Gladrow
et al., 1999). The pH has declined by about 0.1 (equivalent to a hydrogen ion
concentration increase of about 30%) since the beginning of the industrial era.
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NOAA, State of Washington Report on Ocean Acidification, 2012
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Arctic sea ice retreat

Arctic Sea Ice Extent
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Arctic sea ice retreat
Extent in fall (minimum)

Arctic Sea Ice Area
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Arctic sea ice retreat

2007: bad year
(2012 worse)

1979=2000 median minimum

September 16, 2007 Sea Ice Concentration (percent)
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Arctic sea ice retreat
Models do not predict retreat as fast as observed (worrying)
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Figure 1. Arctic September sea ice extent (X 10° km2) from observations (thick red line) and 13 IPCC AR4 climate
models, together with the multi-model ensemble mean (solid black line) and standard deviation (dotted black line). Models
with more than one ensemble member are indicated with an asterisk. Inset shows 9-year running means.

Stroeve et al., GRL, 2007
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FIGURE 5.17 Example of an Antarctic Food Web. Hannah, 2011

Diatoms dependent on sea ice support a diverse food web, including

great whales that feed directly on plankion and several food chains that

have diatoms at their base.
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