Integration by parts is often used when integrating products when a simple substitution does not work. Common integrals of the form $\int x^{n} e^{k x} d x, \int x^{n} \sin (k x) d x$ or $\int x^{n} \cos (k x) d x$ are easily integrated by parts. We use the following formula for integration by parts:

$$
\int u d v=u v-\int v d u
$$

Example: $\int 3 t^{2} e^{t} d t$
Solution: Let $u=3 t^{2}, d v=e^{t} d t$. Then by differentiating u we get $d u=6 t d t$ and by integrating $d v$ we get $v=e^{t}$.
So, $\int 3 t^{2} e^{t} d t=3 t^{2} e^{t}-\int 6 t e^{t} d t$. Now we must use integration by parts again on $\int 6 t e^{t} d t$.
So, $\int 3 t^{2} e^{t} d t=3 t^{2} e^{t}-\left[6 t e^{t}-\int 6 e^{t} d t\right]$.
Therefore $\int 3 t^{2} e^{t} d t=3 t^{2} e^{t}-6 t e^{t}+6 e^{t}+C$.

SHORT CUT METHOD:

If you are using integration by parts and the original u can by differentiated easily with the nth derivative equal to 0 and if $d v$ is easily integrated, then you can use this short cut. Look at the above example.
We have $u=3 t^{2}, d v=e^{t} d t$. Notice that eventually the nth derivative of u is zero $(\mathrm{n}=3)$ and $d v$ is easily integrated. We can therefore use the short cut method shown below by creating a 3 column table. The first column contains $\mathrm{a}+$ or - . We always start with $\mathrm{a}+$ and alternate signs down the column. The second column contains the derivatives of u. We continue differentiating until the derivative is zero. In the last column, we integrate $d v$ in each entry.

\pm	u	$d v$
+	$3 t^{2}$	e^{t}
-	$6 t$	e^{t}
+	6	e^{t}
-	0	e^{t}

Starting with the first " + " we arrow over to the first u entry and then along the diagonal to the next $d v$ entry. We follow this pattern until we reach the final $d v$ entry. See below:

Therefore our result is $\int 3 t^{2} e^{t} d t=3 t^{2} e^{t}-6 t e^{t}+6 e^{t}+C$.
Try looking at some similar problems in a Calculus book and give this a try. It will save you lots of time!!

