Classification Schemes for Identifying Structural Features:

1. Classification based on **GEOMETRY**:

 a. Planar (or subplanar)
 e.g. joints, faults, veins, foliations

 b. Linear
 e.g. lineations

 c. Curviplanar
 e.g. folds

2. Classification based on **DRIVING MECHANISM**:

 a. Tectonic
 Driven by the global plate tectonic system and its interactions with Earth’s interior (e.g. plate boundary faults)

 b. Primary
 Formed in response to the formation process of the rock itself (e.g. cooling cracks in lava flows)

 c. Gravity-driven
 Formed by slip down an inclined surface, slumping, or any other motions ultimately caused by gravity (e.g. collapse of mountain ranges over time)

 d. Density-driven
 Density differences in the crust produce a buoyancy effect that drives motions (less dense material moves upwards), deforming the adjacent rocks (e.g. salt diapirism)

 e. Fluid pressure-driven
 Any fluid or fluidized material can be injected into rocks under a pressure gradient, causing deformation (e.g. igneous dikes and sills)

3. Classification based on **TIMING OF FORMATION**:

 a. Synformational
 Formed at the same time as the material that ultimately forms the rock

 b. Penecontemporaneous
 Formed before full lithification but after deposition

 c. Postformational
 Formed later, unrelated to any phenomena present in the environment in which the rock formed
4. Classification based on **FORMATION PROCESS**:

 a. Fracturing
 Involving crack development in the rock
 b. Frictional sliding
 Related to slip of one part of a rock body past another part, resisted by friction
 c. Plasticity
 Internal flow of crystals without loss of cohesion
 d. Diffusion
 Solid-state transport of material, perhaps assisted by fluids
 e. Combination
 Any combination of the above

5. Classification based on **MATERIAL BEHAVIOR (RHEOLOGY)**:

 a. Brittle
 Loss of cohesion across a discrete surface (fracturing). Occurs at relatively low temperature and pressure or at a high intensity of applied forces
 b. Ductile
 Deformation without loss of cohesion across a discrete surface. Occurs at relatively high temperature and pressure (but less than the melting point) or at a low intensity of forces applied very slowly (e.g. flow, folding, alignment of minerals to form foliations and lineations)
 c. Brittle-Ductile
 Both processes are at work

6. Classification based on **DISTRIBUTION OF DEFORMATION**:

 a. Continuous
 Occurs throughout the rock body at all scales (i.e., a continuum)
 b. Penetrative
 Occurs throughout the rock body at the scale of observation (but shows gaps between structures when observed up close)
 c. Localized
 Structure is continuous or penetrative only within a definable region
 d. Discrete
 Structure occurs as an isolated feature

7. Classification based on **TYPE OF STRAIN**:

 a. Contractional
 Structure accommodates shortening of a region
 b. Extensional
 Structure accommodates stretching of a region
 c. Shearing
 Lateral motions, possibly without local shortening or stretching