Interspecific Competition

The niche and interspecific competition

When niches overlap, competition results

Interspecific Competition

Interspecific competition – Individuals of one species suffer a reduction in fecundity, survivorship, or growth as a result of resource *exploitation* or *interference* by individuals of another species.

Two types of competition:

1. *Exploitation* – Individuals of one species inhibit individuals of another species *INDIRECTLY* through the consumption of a shared resource.

2. *Interference* – Individuals of one species inhibit individuals of another species *DIRECTLY* by preventing their consumption of a shared resource.

Exploitation competition: *Paramecia*

Paramecium aurelia

G.F. Gause (1934, 1935)

Paramecium bursaria

Paramecium caudatum

• Gause began by growing each species in isolation

Paramecium aurelia

Paramecium caudatum

Paramecium bursaria

• In isolation, each species grew logistically

Days

G.F. Gause (1934, 1935)

Days

Days

• Gause then placed pairs of species in the same beaker

Paramecium aurelia

Paramecium caudatum

Paramecium caudatum

Paramecium bursaria

G.F. Gause (1934, 1935)

• Gause found that the species had very different growth curves when grown together

Paramecium aurelia

Paramecium caudatum

Paramecium caudatum

Paramecium bursaria

G.F. Gause (1934, 1935)

Species grown in isolation

Species grown in competition

Exploitation competition depresses population sizes and can lead to extinction

Interference competition: Scottish barnacles

Chthamalus stellatus

Connell (1961)

Interference competition: Scottish barnacles

- Chthalamus occur higher up in the intertidal zone
- However, juvenile Chthalamus do settle in the lower Balanus zone

Interference competition: Scottish barnacles

Experiments that monitored the fate of *Chthalamus* juveniles that moved to the lower intertidal (Connell, 1961) showed that:

• *Balanus* crushed or displaced (through its own growth) the *Chthalamus* juveniles, reducing their survival

• If, however, *Balanus* individuals were removed from the immediate area, juvenile *Chthalamus* could survive well in the lower intertidal

Alfred James Lotka (1880 - 1949)

Vito Volterra (1860-1940)

Independently developed a general model of competition between species

Developing the Lotka-Volterra Model

Imagine we have two species, each growing logistically

We need to incorporate INTERSPECIFIC competition

Incorporating *interspecific competition*

Species 1:
$$\frac{dN_{1}}{dt} = r_{1}N_{1}\left(1 - \frac{\alpha_{1 \leftarrow 1}N_{1} + \alpha_{1 \leftarrow 2}N_{2}}{K_{1}}\right)$$

Species 2:
$$\frac{dN_{2}}{dt} = r_{2}N_{2}\left(1 - \frac{\alpha_{2 \leftarrow 2}N_{2} + \alpha_{2 \leftarrow 1}N_{1}}{K_{2}}\right)$$

Competition coefficients:

 $\alpha_{i \leftarrow i}$ is the effect of species i on its own growth rate (intraspecific competition) $\alpha_{i \leftarrow j}$ is the effect of species j on the growth rate of species i (interspecific competition)

Understanding a

Interspecific < Intraspecific

 $\alpha_{\mathbf{i} \leftarrow \mathbf{j}} < \alpha_{\mathbf{i} \leftarrow \mathbf{i}}$

Here the effect of Species j on species i is less than the effect of Species i on itself. Species i uses more resource (grey box) per capita than does Species j Interspecific > Intraspecific $\alpha_{i \leftarrow j} > \alpha_{i \leftarrow i}$

Here the effect of Species j on species i is greater than the effect of Species i on itself. Species j uses more resource (grey box) per capita than does Species i

Applying the Lotka-Volterra model to Gause's data

Remember, Gause found two possible outcomes of competition:

Outcome 1: One species goes extinct

Outcome 2: Both species coexist

Are these outcomes of competition predicted by the model?

The Lotka-Volterra model predicts:

Three possible equilibria:

Equilibrium #1:
$$\hat{N}_1 = \frac{K_1}{\alpha_{1 \leftarrow 1}}; \hat{N}_2 = 0$$

Equilibrium #2:
$$\hat{N}_1 = 0; \hat{N}_2 = \frac{K_2}{\alpha_{2 \leftarrow 2}}$$

Equilibrium #3:
$$\hat{N}_1 = \frac{\alpha_{1 \leftarrow 1} K_1 - \alpha_{1 \leftarrow 2} K_2}{1 - \alpha_{1 \leftarrow 2} \alpha_{2 \leftarrow 1}}$$
, $\hat{N}_2 = \frac{\alpha_{2 \leftarrow 2} K_2 - \alpha_{2 \leftarrow 1} K_1}{1 - \alpha_{2 \leftarrow 1} \alpha_{1 \leftarrow 2}}$

What do each of these mean biologically?

Which correspond to Gause's experimental findings?

Matching model to data

When does each outcome occur? What conditions favor coexistence vs. extinction?

When is one species driven to extinction?

Anytime: $\alpha_{i \leftarrow i} K_i > \alpha_{i \leftarrow j} K_j$ and $\alpha_{j \leftarrow j} K_j < \alpha_{j \leftarrow i} K_i$

This can happen in two ways:

Species 1 is the superior competitor

Species 2 goes extinct and Species 1 reaches its carrying capacity

Species 2 is the superior competitor

Species 1 goes extinct and Species 2 reaches its carrying capacity

When do the species coexist?

Anytime: $\alpha_{i \leftarrow i} K_i > \alpha_{i \leftarrow j} K_j$ and $\alpha_{j \leftarrow j} K_j > \alpha_{j \leftarrow i} K_i$

When this occurs:

\rightarrow intraspecific competition exceeds interspecific competition

Species 1 and Species 2 coexist with equilibrium densities:

$$\hat{N}_1 = \frac{\alpha_{1 \leftarrow 1} K_1 - \alpha_{1 \leftarrow 2} K_2}{1 - \alpha_{1 \leftarrow 2} \alpha_{2 \leftarrow 1}} \qquad \qquad \hat{N}_2 = \frac{\alpha_{2 \leftarrow 2} K_2 - \alpha_{2 \leftarrow 1} K_1}{1 - \alpha_{2 \leftarrow 1} \alpha_{1 \leftarrow 2}}$$

What favors coexistence?

Coexistence unlikely

Coexistence likely

The more similar two species are ecologically, the more they impact one another and the less likely is coexistence

The competitive exclusion principle

If two competing species coexist in a stable environment, then they do so as a result of niche differentiation. If, however, there is no such differentiation, then one competing species will eliminate or exclude the other.

- Begon et. al. 1996

The competitive exclusion principle

Evidence for the importance of competition

1. Character displacement – Increased ecological differences between species in regions where they occur together

2. Ecological release – The expansion of a species niche under conditions where the other species is absent

Character displacement

• When two species occur in sympatry natural selection should favor the evolution of mechanisms that reduce competition

• This often takes the form of *character displacement*, where the two competing species diverge in a trait that reduces the strength of interspecific competition

Character displacement in *Mimulus*

Fig. 1. The geographic distribution of *Minulus bicolor* (open black circles) is restricted to the Sierra Nevada of California, whereas *M. gutatus* (open gray circles) occurs across western North America. Data were obtained from the global biodiversity information facility (http://www.gbit.org).

American Journal of Botany 101(11): 1915-1924, 2014.

POLLINATOR-MEDIATED COMPETITION INFLUENCES SELECTION FOR FLOWER-COLOR DISPLACEMENT IN SYMPATRIC MONKEYFLOWERS¹

DENA L. GROSSENBACHER^{2,4} AND MAUREEN L. STANTON³

Character displacement in *Mimulus bicolor*

The frequency of the white/divergent morph is greater when *M. bicolor* occurs in sympatry with *M. guttatus*

Character displacement in *Mimulus bicolor*

B Experiment 2 (2010)

T1. Equal morph frequency, with *M. guttatus*

T2. Comparable color frequency, without *M. guttatus*

	2				
0000000	b				
	2				
0000000					
0000000					
00000000	5				

T3. Equal morph frequency, without *M. guttatus*

	$^{\circ}$		0	0	0	
۰	۰	0	۰	۰	0	0
0	0	0	0	•	•	0
	•	0	0	•	O	0
0	0	۰	0	$^{\circ}$	0	0
۰	0	0	۰	۰	0	0
000000						

۱

В Experiment 2 (2010) 1.25В. Relative seeds per flower 1.15A.B. A,B 1.05 0.95 A,C A.C 0.85 C 0.75 Equal morph Comparable color Equal morph frequency, frequency, frequency, with guttatus without guttatus without guttatus

Suggests that competition for pollinators drives character displacement

Ecological release

Ecological release: Interactions between wolves and coyotes

Canis lupus ≈ 95 lbs

Canis latrins \approx 35lbs

Journal of Animal Ecology 2007 76, 1075–1085

Does interference competition with wolves limit the distribution and abundance of coyotes?

KIM MURRAY BERGER and ERIC M. GESE

Ecological release: Interactions between wolves and coyotes

Gallatin Gateway Northern Wolf Status Madison Study Area Wolf-Abundant Wolf-Free Gardines Montana Wyoming River Valley st Yellowstone Yellowstone National Park daho Grand Teton National Elk Ranch Park Antelope Flats Gros Ventre Jackson 50 km

Fig. 1. Map showing the location of the Greater Yellowstone Ecosystem (GYE) in the western United States (inset), the locations of study areas, and place names referred to in the text. 'Wolf status' refers to the distribution of wolves within the GYE during the 1997–2005 period.

Fig. 4. Negative exponential model of the relationship between coyote and wolf densities within protected areas for three study areas (GTNP, LRV and NMSA) in the Greater Yellowstone Ecosystem 1991–2005. For reference, actual coyote and wolf densities in both protected (\diamondsuit) and unprotected (\diamondsuit) areas are shown.

- Suggests wolves competitively exclude coyotes
- Absence of wolves results in ecological release

Practice problem

Site	Wolves Present	Coyotes/km ²
Lamar River	0	0.499
Lamar River	0	0.636
Lamar River	0	0.694
Lamar River	0	0.726
Antelope Flats	0	0.345
Antelope Flats	0	0.479
Antelope Flats	0	0.394
Lamar River	1	0.477
Lamar River	1	0.332
Lamar River	1	0.477
Lamar River	1	0.270
Elk Ranch	1	0.279
Elk Ranch	1	0.308
Elk Ranch	1	0.215
Gros Ventre	1	0.312
Gros Ventre	1	0.247
Northern Madison	1	0.194

Does this data support the hypothesis of ecological release in Coyotes?

Interspecific competition: summary

• Interspecific competition occurs when multiple species overlap in resource use

• The ecological outcome of competition can be stable coexistence or competitive exclusion

• Competitive exclusion becomes increasingly likely as niche overlap increases

• The evolutionary outcome of competition is often ecological character displacement

Exam 2 Results

