
Properties of Populations 

Age structure Density 

Fertility 

http://en.wikipedia.org/wiki/File:Median_age.png
http://en.wikipedia.org/wiki/File:Countriesbyfertilityrate.svg
http://en.wikipedia.org/wiki/File:World_population.svg


What is a population? 

•  A group of organisms of the same species that occupy a well defined geographic  

   region and exhibit reproductive continuity from generation to generation; ecological 

   and reproductive interactions are more frequent among these individuals than with  

   members of other populations of the same species. 

Population 1 Population 2 



Real populations are messy 

Geographic distribution of P. ponderosa 

• Broken up into populations 

 

• But divisions are not entirely clear 

http://www.scentauthority.com/Plant_Maps.html


In the real world, defining populations isn’t simple 

• Populations often do not have clear boundaries 

Habitat 1 Habitat 2 

• Even in cases with clear boundaries, movement may be common 



An extreme example…Ensatina salamanders 

Not only are populations continuous, but so are species! 



Metapopulations make things even more complicated 

• Occur in fragmented habitats 

 

• Connected by limited migration 

 

• Characterized by extinction 

   and recolonization   

   populations are transient 



Red dots indicate occupied habitat and  

white dots empty habitat in 1993.  

Picture by Timo Pakkala  

Glanville Fritillary in the Åland Islands  

The glanville fritillary 



Some Important Properties of Populations 

1) Density – The number of organisms per unit area 

 

 

2) Genetic structure – The spatial distribution of genotypes 

 

 

3) Age structure – The ratio of one age class to another 

 

 

4) Growth rate – (Births + Immigration) – (Deaths + Emigration) 



Population density of the Carolina wren 

Describing populations I – Population density 

United States at night 

Population density shapes: 

 

• Strength of competition within species 

 

• Spread of disease 

 

• Strength of interactions between species 

 

• Rate of evolution 

iii AN /



Population density and disease, Trypanasoma cruzi 

(Chagas disease) 

Trypanasoma cruzi (protozoan) 

“Assassin bug” (vector) 

Currently infects between  

16,000,000 and 18,000,000 people and 

kills about 50,000 people each year 

http://upload.wikimedia.org/wikipedia/commons/c/c3/Carte_maladie_Chagas.png


Population density and disease, Trypanasoma cruzi 

• Since 1950, human population has 

increased ≈ 7 fold 

 

 

• Since 1950, the number of infections 

has increased ≈ 30 fold 

 

 

• Suggests that rates of infection are 

increasing with human density 

 

Antonio R.L. Teixeira, et. al., 2000.  
Emerging infectious diseases. 7: 100-112.  

A case study from the Brazilian Amazon 



Describing populations II – Genetic structure 

Imagine a case with 2 alleles: A and a, with frequencies pi and qi, respectively 

Population 1 Population 2 

AA 
AA 

AA 

AA 

p1 = .9 p2 = .1 

AA 
AA 

AA 

AA 

Aa 
Aa 

aa 

aa 
aa 

aa 

aa aa 
aa 

aa 

Aa 

Aa 

p1 = 18/20 = .9 

q1 = 2/20 = .1 = 1-p1 

p2 = 2/20 = .1 

q2 = 18/20 = .9 = 1-p2 

These populations exhibit genetic structure! 



Sickled cells and malaria resistance 

Malaria in red blood cells 

A ‘sickled’ red blood cell 

Genotype Phenotype 

AA Normal red blood cells, malaria susceptible 

Aa Mostly normal red blood cells, malaria 

resistant 

aa Mostly sickled cells, very sick 



Global distribution of Malaria and the Sickle cell gene 

The frequency of the sickle cell gene is higher in populations where Malaria has been  

prevalent historically 

Historical range  

of malaria; high frequency 

of sickle allele 

Recently colonized 

by malaria; 

low frequency of sickle 

allele 



Describing populations III – Age structure 



What determines a population’s age structure? 

• Probability of death for various age classes 

 

 

• Probability of reproducing for various age classes 

 

 

• These probabilities are summarized using life tables 



Mortality schedules: the probability of surviving to age x 

N
u

m
b

er
 s

u
rv

iv
in

g
 (

L
o
g
 s

ca
le

) 

Age 

Parental care 

Little parental care 

We can quantify mortality schedules using life table 



Quantifying mortality using life tables 

x Nx lx 

1 1000 1.000 

2 916 .916 

3 897 .897 

4 897 .897 

5 747 .747 

6 426 .426 

7 208 .208 

8 150 .150 

9 20 .020 

Age  

class 

Number  

alive at 

age x 

Proportion 

surviving  

to age x 

Now let’s work through calculating the entries 

How could you collect this data in a 

natural population? 



Calculating entries of the life table: lx 
The proportion surviving to age class x = The probability of surviving to age class x 

x Nx lx 

1 1000 1.000 

2 916 = N2/N1 = 916/1000 = .916 

3 897 = N3/N1 = 897/1000 = .897 

4 897 = N4/N1 = 897/1000 = .897 

5 747 = N5/N1 = 747/1000 = .747 

6 426 = N6/N1 = 426/1000 = .426 

7 208 = N7/N1 = 208/1000 = .208 

8 150 = N8/N1 = 150/1000 = .150 

9 20 = N9/N1 = 20/1000 = .020 

lx = Nx/N0 

Follow a single ‘cohort’ 



What determines a population’s age structure? 

• Probability of death for various age classes  

 

 

• # of offspring produced by various age classes 

 

 

• These probabilities are summarized using life tables 



Fecundity schedules: # of offspring produced at age x 

mx 

Age 

mx = The expected number of daughters produced by mothers of age x 

Many mammals 

Long lived plants 

Fecundity can also be summarized using life tables 



Summarizing fecundity using a life table 

x lx mx 

1 1 0 

2 .8 0 

3 .6 .5 

4 .4 1 

5 .2 5 

This entry designates the 

EXPECTED # of offspring 

produced by an individual of age 4.  

 

In other words, this is the 

AVERAGE # of offspring produced 

by individuals of age 4 



If lx and mx do not change, populations reach a stable age 

distribution 

As long as lx and mx remain constant, these distributions would never change! 

Population starting with all four year olds 

Population starting with all one year olds 

High juvenile but low adult mortality 

Low juvenile but high adult mortality 



Describing populations IV – Growth rate 

Negative growth 

Zero growth 

Positive growth 

A population’s growth rate can be readily estimated  

*** if a stable age distribution has been reached *** 

  



Why is a stable age distribution important?  



Using life tables to calculate population growth rate 

x lx mx lxmx 

1 1 0 = 1*0 = 0 

2 .75 0 = .75*0 = 0 

3 .5 1 = .5*1 = .50 

4 .25 4 = .25*4 = 1 

R0 = ∑ lx mx 

This number, R0, tells us the expected number of  

offspring produced by an individual over its 

lifetime. 

• If R0 < 1, the population size is decreasing 

 

• If R0 = 1, the population size is steady 

 

• If R0 > 1, the population size is increasing 

 

 

 

The first step is to calculate R0: 

R0 = ∑ lx mx = 1*0 + .75*0 + .5*1 + .25*4 = 1.5 



Using life tables to calculate population growth rate 

This number, G, is a measure of the generation 

time of the population, or more specifically, the 

expected (average) age of reproduction 

The second step is to calculate G 

67.3
5.1

5.5

4*25.1*5.0*75.0*1

4*4*25.3*1*5.2*0*75.1*0*1

0

0 













k

x

xx

k

x

xx

ml

xml

G

x lx mx lxmx 

1 1 0 0 

2 .75 0 0 

3 .5 1 .50 

4 .25 4 1 








k

x

xx

k

x

xx

ml

xml

G

1

1



Using life tables to calculate population growth rate 

This number, r, is a measure of the population growth rate.  

 

Specifically, r is the probability that an individual gives birth per unit time minus the 

probability that an individual dies per unit time. 

 

 

              Population growth rate depends on two things: 

 1. Generation time, G 

 2. The number of offspring produced by each individual over its lifetime, R0 

The last step is to calculate r 
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The importance of generation time 

x lx mx lxmx 

1 1 1 1 

2 .75 .667 .5 

3 .5 0 0 

4 .25 0 0 

x lx mx lxmx 

1 1 0 0 

2 .75 0 0 

3 .5 1 .50 

4 .25 4 1 

Imagine two different populations, each with the same R0: 

Population 1 Population 2 

R0,1 = 1.5 R0,2 = 1.5 

G1 = 3.67 G2 = 1.33 

r1 = .110 r2 = .305 

The growth rate of population 2 is almost three times greater, even though individuals 

in the two populations have identical numbers of offspring! 



Using r to predict the future size of a population 
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The change in population size, N, per unit 

time, t, is given by this differential equation: 

 
 
 

Using basic calculus 

 
 
 

Gives us an equation that predicts the 

population size at any time t, Nt, for a 

current population of size N0: 

One of the most influential equations in the history of biology 



What are the consequences of this result? 

For population size to remain the same, the following must be true: 

This can only be true if   ??? 

This is the concept of an equilibrium 
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What are the consequences of this result? 
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r = -.1 r = 0 r = .1 

If r is anything other than 0 (R0 is anything other than 1), the population goes extinct or 

becomes infinitely large 
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A real example of exponential population growth… 

From 0-1500: Human population increases by ≈ 1.0 billion 

 

From 1500-2000: Human population increases by ≈ 10.0 billion 

This observation had important historical consequences… 
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A team of conservation biologists is interested in determining the optimum environment for raising an endangered species of 

flowering plant in captivity. For their purposes, the optimum environment is the one that maximizes the growth rate of the 

captive population allowing more individuals to be released into the wild in each generation. To this end, they estimated life 

table data for two cohorts (each of size 100)  of captive plants, each raised under a different set of environmental conditions. 

Using the data in the hypothetical life tables below, answer the following questions:  

Using life tables: A practice question 

Population 1  

(in environment 1) 

Population 2 

(in environment 2) 

x Nx lx mx x Nx lx mx 

1 100 1.0 0                  1 100 1.0 2 

2 50 .50 0 2 50 .50 2 

3 25 .25 8 3 25 .25 0 

4 10 .10 10 4 10 .10 0 

A. Using the data from the hypothetical life tables above, calculate the expected number of offspring produced by each 

individual plant over its life, R0, for each of the populations. 

B. Using the data in the life tables above, calculate the generation time for each of the populations. 

  

C. Using your calculations in A and B, estimate the population growth rate, r, of the two populations. Which population 

is growing faster? Why? 

D. Assuming the populations both initially contain 100 individuals, estimate the size of each population in five years. 

E. If the sole goal of the conservation biologists was to maximize the growth rate of the captive population, which 

conditions (those experienced by population 1 or 2) should they use for their future programs? 

*** We will work through this problem during the next class. Be prepared*** 


