Estimating the Strength of Stabilizing Selection and the Optimum Phenotype

I. Theoretical Background

In class lectures, we have often assumed that a population experiences stabilizing selection such that the fitness of an individual with phenotype z is given by:

$$
\begin{equation*}
W=\operatorname{Exp}\left[-\gamma(z-\theta)^{2}\right] \tag{1}
\end{equation*}
$$

where γ is the strength of stabilizing selection and θ is the optimal phenotype.
If stabilizing selection is weak, (1) is approximately equal to:

$$
\begin{equation*}
W \approx 1-\gamma(z-\theta)^{2} \tag{2}
\end{equation*}
$$

and the change in the population mean phenotype, \bar{z}, is given by:

$$
\begin{equation*}
\Delta \bar{z}=2 \gamma G(\theta-\bar{z}) \tag{3}
\end{equation*}
$$

In order to predict evolution, we need to estimate both γ and θ.

II. Estimating γ and $\boldsymbol{\theta}$ from "real" data

If you have estimated the fitness and phenotype of individuals within a population, it is - in principle - possible to estimate both γ and θ using quadratic regression. Specifically, using the regression model:

$$
\begin{equation*}
w=k+\beta z+\gamma z^{2} \tag{4}
\end{equation*}
$$

and least squares, any standard statistical package will provide you with estimates for both β and γ. The estimated values of these parameters are the values appearing in evolution equation (2) and DO NOT NEED TO BE DOUBLED. In order to estimate θ, simply take the derivative of (4) with respect to z , set this equation equal to zero, and solve for z :

$$
\begin{align*}
& \frac{d w}{d z}=\beta+2 \gamma z \tag{5.1}\\
& 0=\beta+2 \gamma z \tag{5.2}\\
& z=-\frac{\beta}{2 \gamma}=\theta \tag{5.3}
\end{align*}
$$

Note that some statistical packages such as JMP estimate a slightly different regression equation where the polynomials are centered on the population mean:

$$
\begin{equation*}
w=k+\beta z+\gamma(z-\bar{z})^{2} \tag{6}
\end{equation*}
$$

Estimating the Strength of Stabilizing Selection and the Optimum Phenotype

In this case, the program will provide you with estimates for β and γ just as discussed in the previous case but you cannot use (5.3) to estimate θ, even though the procedure for identifying θ is identical. Specifically, in order to find θ using the regression equation reported by JMP (or other software that centers the polynomials):

$$
\begin{align*}
& \frac{d w}{d z}=\beta+2 \gamma z-2 \gamma \bar{z} \tag{6.1}\\
& 0=\beta+2 \gamma z-2 \gamma \bar{z} \tag{6.2}\\
& z=\frac{2 \gamma \bar{z}-\beta}{2 \gamma}=\theta \tag{6.3}
\end{align*}
$$

