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Defining probability Probability

Random processes

A random process is a
situation in which we know
what outcomes could happen,
but we don’t know which
particular outcome will
happen.

Examples: coin tosses, die
rolls, iTunes shuffle, whether
the stock market goes up or
down tomorrow, etc.

It can be helpful to model a
process as random even if it
is not truly random.

http:// www.cnet.com.au/

itunes-just-how-random-is-random-339274094.htm
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Defining probability Defining probability

Probability

There are several possible interpretations of probability but they
(almost) completely agree on the mathematical rules probability
must follow.

P(A) = Probability of event A
0 ≤ P(A) ≤ 1

Frequentist interpretation:
The probability of an outcome is the proportion of times the
outcome would occur if we observed the random process an
infinite number of times.

Bayesian interpretation:
A Bayesian interprets probability as a subjective degree of belief:
For the same event, two separate people could have different
viewpoints and so assign different probabilities.
Largely popularized by revolutionary advance in computational
technology and methods during the last twenty years.
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Defining probability Defining probability

Practice

Which of the following events would you be most surprised by?

(a) exactly 3 heads in 10 coin flips

(b) exactly 3 heads in 100 coin flips

(c) exactly 3 heads in 1000 coin flips
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Defining probability Defining probability

Law of large numbers

Law of large numbers states that as more observations are collected,
the proportion of occurrences with a particular outcome, p̂n,
converges to the probability of that outcome, p.
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Defining probability Defining probability

Law of large numbers (cont.)

When tossing a fair coin, if heads comes up on each of the first 10
tosses, what do you think the chance is that another head will come
up on the next toss? 0.5, less than 0.5, or more than 0.5?

H H H H H H H H H H ?

The probability is still 0.5, or there is still a 50% chance that
another head will come up on the next toss.

P(H on 11th toss) = P(T on 11th toss) = 0.5

The coin is not “due” for a tail.
The common misunderstanding of the LLN is that random
processes are supposed to compensate for whatever happened
in the past; this is just not true and is also called gambler’s fallacy
(or law of averages).
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Defining probability Defining probability
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Defining probability Disjoint or mutually exclusive outcomes

Disjoint and non-disjoint outcomes

Disjoint (mutually exclusive) outcomes: Cannot happen at the same
time.

The outcome of a single coin toss cannot be a head and a tail.

A student both cannot fail and pass a class.

A single card drawn from a deck cannot be an ace and a queen.

Non-disjoint outcomes: Can happen at the same time.

A student can get an A in Stats and A in Econ in the same
semester.
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Defining probability Disjoint or mutually exclusive outcomes

Union of non-disjoint events

What is the probability of drawing a jack or a red card from a well
shuffled full deck?

P(jack or red) = P(jack) + P(red) − P(jack and red)

=
4
52
+

26
52
−

2
52
=

28
52

Figure from http:// www.milefoot.com/ math/ discrete/ counting/ cardfreq.htm.
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Defining probability Probabilities when events are not disjoint

Practice

What is the probability that a randomly sampled student thinks mar-
ijuana should be legalized or they agree with their parents’ political
views?

Share Parents’ Politics
Legalize MJ No Yes Total
No 11 40 51
Yes 36 78 114
Total 47 118 165

(a) 40+36−78
165

(b) 114+118−78
165

(c) 78
165

(d) 78
188

(e) 11
47
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Defining probability Probabilities when events are not disjoint

Recap

General addition rule

P(A or B) = P(A) + P(B) − P(A and B)

Note: For disjoint events P(A and B) = 0, so the above formula simplifies to

P(A or B) = P(A) + P(B).
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Defining probability Probability distributions

Probability distributions

A probability distribution lists all possible events and the probabilities
with which they occur.

The probability distribution for the gender of one kid:
Event Male Female

Probability 0.5 0.5

Rules for probability distributions:
1. The events listed must be disjoint
2. Each probability must be between 0 and 1
3. The probabilities must total 1

The probability distribution for the genders of two kids:
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Defining probability Probability distributions

Practice

In a survey, 52% of respondents said they are Democrats. What is the
probability that a randomly selected respondent from this sample is a
Republican?

(a) 0.48

(b) more than 0.48

(c) less than 0.48

(d) cannot calculate using only the information given
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In a survey, 52% of respondents said they are Democrats. What is the
probability that a randomly selected respondent from this sample is a
Republican?

(a) 0.48

(b) more than 0.48

(c) less than 0.48

(d) cannot calculate using only the information given

If the only two political parties are Republican and Democrat, then (a)
is possible. However it is also possible that some people do not
affiliate with a political party or affiliate with a party other than these
two. Then (c) is also possible. However (b) is definitely not possible
since it would result in the total probability for the sample space being
above 1.
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Defining probability Complement of an event

Sample space and complements

Sample space is the collection of all possible outcomes of a trial.

A couple has one kid, what is the sample space for the gender of
this kid? S = {M,F}

A couple has two kids, what is the sample space for the gender
of these kids?

S = {MM,FF,FM,MF}

Complementary events are two mutually exclusive events whose
probabilities that add up to 1.

A couple has one kid. If we know that the kid is not a boy, what is
gender of this kid? { M, F } → Boy and girl are complementary
outcomes.

A couple has two kids, if we know that they are not both girls,
what are the possible gender combinations for these kids? { MM,
FF, FM, MF }
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Defining probability Independence

Independence

Two processes are independent if knowing the outcome of one
provides no useful information about the outcome of the other.

Knowing that the coin landed on a head on the first toss does not
provide any useful information for determining what the coin will
land on in the second toss. → Outcomes of two tosses of a coin
are independent.

Knowing that the first card drawn from a deck is an ace does
provide useful information for determining the probability of
drawing an ace in the second draw. → Outcomes of two draws
from a deck of cards (without replacement) are dependent.
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Defining probability Independence

Practice

Between January 9-12, 2013, SurveyUSA interviewed a random sample of
500 NC residents asking them whether they think widespread gun ownership
protects law abiding citizens from crime, or makes society more dangerous.
58% of all respondents said it protects citizens. 67% of White respondents,
28% of Black respondents, and 64% of Hispanic respondents shared this
view. Which of the below is true?

Opinion on gun ownership and race ethnicity are most likely

(a) complementary

(b) mutually exclusive

(c) independent

(d) dependent

(e) disjoint

http:// www.surveyusa.com/ client/ PollReport.aspx?g=a5f460ef-bba9-484b-8579-1101ea26421b
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Defining probability Independence

Checking for independence

If P(A occurs, given that B is true) = P(A | B) = P(A), then A and B are
independent.

P(protects citizens) = 0.58

P(randomly selected NC resident says gun ownership protects
citizens, given that the resident is white) =
P(protects citizens |White) = 0.67

P(protects citizens | Black) = 0.28

P(protects citizens | Hispanic) = 0.64

P(protects citizens) varies by race/ethnicity, therefore opinion on gun
ownership and race ethnicity are most likely dependent.
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Defining probability Independence

Determining dependence based on sample data

If conditional probabilities calculated based on sample data
suggest dependence between two variables, the next step is to
conduct a hypothesis test to determine if the observed difference
between the probabilities is likely or unlikely to have happened
by chance.

If the observed difference between the conditional probabilities is
large, then there is stronger evidence that the difference is real.

If a sample is large, then even a small difference can provide
strong evidence of a real difference.

We saw that P(protects citizens | White) = 0.67 and P(protects citizens | His-
panic) = 0.64. Under which condition would you be more convinced of a real
difference between the proportions of Whites and Hispanics who think gun
widespread gun ownership protects citizens? n = 500 or n = 50, 000

n = 50, 000
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Defining probability Independence

Product rule for independent events

P(A and B) = P(A) × P(B)

Or more generally, P(A1 and · · · and Ak) = P(A1) × · · · × P(Ak)

You toss a coin twice, what is the probability of getting two tails in a
row?

P(T on the first toss) × P(T on the second toss) =
1
2
×

1
2
=

1
4
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Defining probability Independence

Practice

A recent Gallup poll suggests that 25.5% of Texans do not have health
insurance as of June 2012. Assuming that the uninsured rate stayed
constant, what is the probability that two randomly selected Texans are
both uninsured?

(a) 25.52

(b) 0.2552

(c) 0.255 × 2

(d) (1 − 0.255)2

http:// www.gallup.com/ poll/ 156851/ uninsured-rate-stable-across-states-far-2012.aspx
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Defining probability Recap

Disjoint vs. complementary

Do the sum of probabilities of two disjoint events always add up to 1?

Not necessarily, there may be more than 2 events in the sample
space, e.g. party affiliation.

Do the sum of probabilities of two complementary events always add
up to 1?

Yes, that’s the definition of complementary, e.g. heads and tails.
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Defining probability Recap

Putting everything together...

If we were to randomly select 5 Texans, what is the probability that at
least one is uninsured?

If we were to randomly select 5 Texans, the sample space for the
number of Texans who are uninsured would be:

S = {0, 1, 2, 3, 4, 5}

We are interested in instances where at least one person is
uninsured:

S = {0, 1, 2, 3, 4, 5}

So we can divide up the sample space into two categories:

S = {0, at least one}
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Defining probability Recap

Putting everything together...

Since the probability of the sample space must add up to 1:

Prob(at least 1 uninsured) = 1 − Prob(none uninsured)

= 1 − [(1 − 0.255)5]

= 1 − 0.7455

= 1 − 0.23

= 0.77

At least 1

P(at least one) = 1 − P(none)
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Defining probability Recap

Practice

Roughly 20% of undergraduates at a university are vegetarian or ve-
gan. What is the probability that, among a random sample of 3 under-
graduates, at least one is vegetarian or vegan?

(a) 1 − 0.2 × 3

(b) 1 − 0.23

(c) 0.83

(d) 1 − 0.8 × 3
(e) 1 − 0.83
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gan. What is the probability that, among a random sample of 3 under-
graduates, at least one is vegetarian or vegan?

(a) 1 − 0.2 × 3

(b) 1 − 0.23

(c) 0.83

(d) 1 − 0.8 × 3
(e) 1 − 0.83

P(at least 1 from veg) = 1 − P(none veg)
= 1 − (1 − 0.2)3

= 1 − 0.83

= 1 − 0.512 = 0.488
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Conditional probability Marginal and joint probabilities

Relapse

Researchers randomly assigned 72 chronic users of cocaine into
three groups: desipramine (antidepressant), lithium (standard
treatment for cocaine) and placebo. Results of the study are
summarized below.

no
relapse relapse total

desipramine 10 14 24
lithium 18 6 24
placebo 20 4 24
total 48 24 72

http:// www.oswego.edu/∼srp/ stats/ 2 way tbl 1.htm
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Conditional probability Marginal and joint probabilities

Marginal probability

What is the probability that a patient relapsed?

no
relapse relapse total

desipramine 10 14 24
lithium 18 6 24
placebo 20 4 24
total 48 24 72

P(relapsed) = 48
72 ≈ 0.67
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Conditional probability Marginal and joint probabilities

Joint probability

What is the probability that a patient received the antidepressant (de-
sipramine) and relapsed?

no
relapse relapse total

desipramine 10 14 24
lithium 18 6 24
placebo 20 4 24
total 48 24 72

P(relapsed and desipramine) = 10
72 ≈ 0.14
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Conditional probability Defining conditional probability

Conditional probability

Conditional probability

The conditional probability of the outcome of interest A given
condition B is calculated as

P(A|B) =
P(A and B)

P(B)

no
relapse relapse total

desipramine 10 14 24
lithium 18 6 24
placebo 20 4 24
total 48 24 72

P(relapse|desipramine)

=
P(relapse and desipramine)

P(desipramine)

=
10/72
24/72

=
10
24

= 0.42
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Conditional probability Defining conditional probability

Conditional probability (cont.)

If we know that a patient received the antidepressant (desipramine),
what is the probability that they relapsed?

no
relapse relapse total

desipramine 10 14 24
lithium 18 6 24
placebo 20 4 24
total 48 24 72

P(relapse | desipramine) = 10
24 ≈ 0.42

P(relapse | lithium) = 18
24 ≈ 0.75

P(relapse | placebo) = 20
24 ≈ 0.83
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Conditional probability (cont.)
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Conditional probability Defining conditional probability

Conditional probability (cont.)

If we know that a patient relapsed, what is the probability that they
received the antidepressant (desipramine)?

no
relapse relapse total

desipramine 10 14 24
lithium 18 6 24
placebo 20 4 24
total 48 24 72

P(desipramine | relapse) = 10
48 ≈ 0.21

P(lithium | relapse) = 18
48 ≈ 0.375

P(placebo | relapse) = 20
48 ≈ 0.42
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Conditional probability Defining conditional probability

Conditional probability (cont.)
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Conditional probability General multiplication rule

General multiplication rule

Earlier we saw that if two events are independent, their joint
probability is simply the product of their probabilities. If the
events are not believed to be independent, the joint probability is
calculated slightly differently.

If A and B represent two outcomes or events, then

P(A and B) = P(A|B) × P(B)

Note that this formula is simply the conditional probability
formula, rearranged.

It is useful to think of A as the outcome of interest and B as the
condition.
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Conditional probability Independence considerations in conditional probability

Independence and conditional probabilities

Consider the following (hypothetical) distribution of gender and major
of students in an introductory statistics class:

social non-social
science science total

female 30 20 50
male 30 20 50
total 60 40 100

The probability that a randomly selected student is a social
science major is 60

100 = 0.6.

The probability that a randomly selected student is a social
science major given that they are female is 30

50 = 0.6.

Since P(SS|M) also equals 0.6, major of students in this class
does not depend on their gender: P(SS | F) = P(SS).
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Conditional probability Independence considerations in conditional probability

Independence and conditional probabilities (cont.)

Generically, if P(A|B) = P(A) then the events A and B are said to be
independent.

Conceptually: Giving B doesn’t tell us anything about A.

Mathematically: We know that if events A and B are
independent, P(A and B) = P(A) × P(B). Then,

P(A|B) =
P(A and B)

P(B)
=

P(A) × P(B)
P(B)

= P(A)
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Conditional probability Tree diagrams

Breast cancer screening

American Cancer Society estimates that about 1.7% of women
have breast cancer.
http:// www.cancer.org/ cancer/ cancerbasics/ cancer-prevalence

Susan G. Komen For The Cure Foundation states that
mammography correctly identifies about 78% of women who
truly have breast cancer.
http:// ww5.komen.org/ BreastCancer/ AccuracyofMammograms.html

An article published in 2003 suggests that up to 10% of all
mammograms result in false positives for patients who do not
have cancer.
http:// www.ncbi.nlm.nih.gov/ pmc/ articles/ PMC1360940

Note: These percentages are approximate, and very difficult to estimate.
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Conditional probability Tree diagrams

Inverting probabilities

When a patient goes through breast cancer screening there are two
competing claims: patient had cancer and patient doesn’t have cancer.
If a mammogram yields a positive result, what is the probability that
patient actually has cancer?

Cancer status Test result

cancer,  0.017

positive,  0.78
0.017*0.78 = 0.0133

negative,  0.22
0.017*0.22 = 0.0037

no cancer,  0.983

positive,  0.1
0.983*0.1 = 0.0983

negative,  0.9
0.983*0.9 = 0.8847

P(C|+)

=
P(C and +)

P(+)

=
0.0133

0.0133 + 0.0983
= 0.12

Note: Tree diagrams are useful for inverting probabilities: we are given P(+|C) and

asked for P(C|+).
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Conditional probability Tree diagrams

Practice

Suppose a woman who gets tested once and obtains a positive result
wants to get tested again. In the second test, what should we assume
to be the probability of this specific woman having cancer?

(a) 0.017

(b) 0.12

(c) 0.0133

(d) 0.88
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Conditional probability Tree diagrams

Practice

What is the probability that this woman has cancer if this second mam-
mogram also yielded a positive result?

(a) 0.0936

(b) 0.088

(c) 0.48

(d) 0.52
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Cancer status Test result

cancer,  0.12
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0.12*0.78 = 0.0936

negative,  0.22
0.12*0.22 = 0.0264

no cancer,  0.88

positive,  0.1
0.88*0.1 = 0.088

negative,  0.9
0.88*0.9 = 0.792
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Conditional probability Bayes’ Theorem

Bayes’ Theorem

The conditional probability formula we have seen so far is a
special case of the Bayes’ Theorem, which is applicable even
when events have more than just two outcomes.

Bayes’ Theorem:

P(outcome A1 of variable 1 | outcome B of variable 2)

=
P(B|A1)P(A1)

P(B|A1)P(A1) + P(B|A2)P(A2) + · · · + P(B|Ak)P(Ak)

where A2, · · · , Ak represent all other possible outcomes of
variable 1.
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Conditional probability Bayes’ Theorem

Application activity: Inverting probabilities

A common epidemiological model for the spread of diseases is the SIR model, where

the population is partitioned into three groups: Susceptible, Infected, and Recovered.

This is a reasonable model for diseases like chickenpox where a single infection usu-

ally provides immunity to subsequent infections. Sometimes these diseases can also

be difficult to detect.

Imagine a population in the midst of an epidemic where 60% of the population is

considered susceptible, 10% is infected, and 30% is recovered. The only test for

the disease is accurate 95% of the time for susceptible individuals, 99% for infected

individuals, but 65% for recovered individuals. (Note: In this case accurate means

returning a negative result for susceptible and recovered individuals and a positive

result for infected individuals).

Draw a probability tree to reflect the information given above. If the individual has

tested positive, what is the probability that they are actually infected?
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Conditional probability Bayes’ Theorem

Application activity: Inverting probabilities (cont.)
Group Test result

susceptible,  0.6

positive,  0.05
0.03

negative,  0.95
0.57

infected,  0.1

positive,  0.99
0.099

negative,  0.01
0.001

recovered,  0.3

positive,  0.35
0.105

negative,  0.65
0.195

P(inf |+) =
P(inf and +)

P(+)
=

0.099
0.03 + 0.099 + 0.105

≈ 0.423
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Sampling from a small population

1 Defining probability

2 Conditional probability

3 Sampling from a small population

4 Random variables

5 Continuous distributions
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Sampling from a small population

Sampling with replacement

When sampling with replacement, you put back what you just drew.

Imagine you have a bag with 5 red, 3 blue and 2 orange chips in
it. What is the probability that the first chip you draw is blue?

5  , 3  , 2  

Prob(1st chip B) =
3

5 + 3 + 2
=

3
10
= 0.3

Suppose you did indeed pull a blue chip in the first draw. If
drawing with replacement, what is the probability of drawing a
blue chip in the second draw?

1st draw: 5  , 3  , 2  
2nd draw: 5  , 3  , 2  

Prob(2nd chip B|1st chip B) =
3

10
= 0.3
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Sampling from a small population

Sampling with replacement (cont.)

Suppose you actually pulled an orange chip in the first draw. If
drawing with replacement, what is the probability of drawing a
blue chip in the second draw?

1st draw: 5  , 3  , 2  
2nd draw: 5  , 3  , 2  

Prob(2nd chip B|1st chip O) =
3
10
= 0.3

If drawing with replacement, what is the probability of drawing
two blue chips in a row?

1st draw: 5  , 3  , 2  
2nd draw: 5  , 3  , 2  

Prob(1st chip B) · Prob(2nd chip B|1st chip B) = 0.3 × 0.3

= 0.32 = 0.09
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Sampling from a small population

Sampling with replacement (cont.)

When drawing with replacement, probability of the second chip
being blue does not depend on the color of the first chip since
whatever we draw in the first draw gets put back in the bag.

Prob(B|B) = Prob(B|O)

In addition, this probability is equal to the probability of drawing a
blue chip in the first draw, since the composition of the bag never
changes when sampling with replacement.

Prob(B|B) = Prob(B)

When drawing with replacement, draws are independent.
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Sampling from a small population

Sampling without replacement

When drawing without replacement you do not put back what you just
drew.

Suppose you pulled a blue chip in the first draw. If drawing
without replacement, what is the probability of drawing a blue
chip in the second draw?

1st draw: 5  , 3  , 2  
2nd draw: 5  , 2  , 2  

Prob(2nd chip B|1st chip B) =
2
9
= 0.22

If drawing without replacement, what is the probability of drawing
two blue chips in a row?

1st draw: 5  , 3  , 2  
2nd draw: 5  , 2  , 2  

Prob(1st chip B) · Prob(2nd chip B|1st chip B) = 0.3 × 0.22

= 0.066
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Sampling from a small population

Sampling without replacement (cont.)

When drawing without replacement, the probability of the second
chip being blue given the first was blue is not equal to the
probability of drawing a blue chip in the first draw since the
composition of the bag changes with the outcome of the first
draw.

Prob(B|B) , Prob(B)

When drawing without replacement, draws are not independent.

This is especially important to take note of when the sample
sizes are small. If we were dealing with, say, 10,000 chips in a
(giant) bag, taking out one chip of any color would not have as
big an impact on the probabilities in the second draw.
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Sampling from a small population

Practice

In most card games cards are dealt without replacement. What is the
probability of being dealt an ace and then a 3? Choose the closest
answer.

(a) 0.0045

(b) 0.0059

(c) 0.0060

(d) 0.1553

P(ace then 3) =
4

52
×

4
51
≈ 0.0060
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Random variables

1 Defining probability

2 Conditional probability

3 Sampling from a small population

4 Random variables
Expectation
Variability in random variables
Linear combinations of random variables
Variability in linear combinations of random variables
Recap

5 Continuous distributions
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Random variables

Random variables

A random variable is a numeric quantity whose value depends
on the outcome of a random event

We use a capital letter, like X, to denote a random variable
The values of a random variable are denoted with a lowercase
letter, in this case x
For example, P(X = x)

There are two types of random variables:
Discrete random variables often take only integer values

Example: Number of credit hours, Difference in number of credit
hours this term vs last

Continuous random variables take real (decimal) values
Example: Cost of books this term, Difference in cost of books this
term vs last
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Random variables Expectation

Expectation

We are often interested in the average outcome of a random
variable.

We call this the expected value (mean), and it is a weighted
average of the possible outcomes

µ = E(X) =
k∑

i=1

xi P(X = xi)
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Random variables Expectation

Expected value of a discrete random variable

In a game of cards you win $1 if you draw a heart, $5 if you draw an
ace (including the ace of hearts), $10 if you draw the king of spades
and nothing for any other card you draw. Write the probability model
for your winnings, and calculate your expected winning.

Event X P(X) X P(X)

Heart (not ace) 1 12
52

12
52

Ace 5 4
52

20
52

King of spades 10 1
52

10
52

All else 0 35
52 0

Total E(X) = 42
52 ≈ 0.81
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for your winnings, and calculate your expected winning.

Event X P(X) X P(X)

Heart (not ace) 1 12
52

12
52

Ace 5 4
52

20
52

King of spades 10 1
52

10
52

All else 0 35
52 0

Total E(X) = 42
52 ≈ 0.81
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Random variables Expectation

Expected value of a discrete random variable (cont.)

Below is a visual representation of the probability distribution of
winnings from this game:

0 1 2 3 4 5 6 7 8 9 10
0.0

0.1

0.2

0.3

0.4

0.5

0.6
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Random variables Variability in random variables

Variability

We are also often interested in the variability in the values of a
random variable.

σ2 = Var(X) =
k∑

i=1

(xi − E(X))2P(X = xi)

σ = SD(X) =
√

Var(X)
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Random variables Variability in random variables

Variability of a discrete random variable

For the previous card game example, how much would you expect the
winnings to vary from game to game?
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Variability of a discrete random variable

For the previous card game example, how much would you expect the
winnings to vary from game to game?

X P(X) X P(X) (X − E(X))2 P(X) (X − E(X))2

1 12
52 1 × 12

52 =
12
52 (1 − 0.81)2 = 0.0361 12

52 × 0.0361 = 0.0083

5 4
52 5 × 4

52 =
20
52 (5 − 0.81)2 = 17.5561 4

52 × 17.5561 = 1.3505

10 1
52 10 × 1

52 =
10
52 (10 − 0.81)2 = 84.4561 1

52 × 84.0889 = 1.6242

0 35
52 0 × 35

52 = 0 (0 − 0.81)2 = 0.6561 35
52 × 0.6561 = 0.4416

E(X) = 0.81
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Random variables Variability in random variables

Variability of a discrete random variable

For the previous card game example, how much would you expect the
winnings to vary from game to game?

X P(X) X P(X) (X − E(X))2 P(X) (X − E(X))2

1 12
52 1 × 12

52 =
12
52 (1 − 0.81)2 = 0.0361 12

52 × 0.0361 = 0.0083

5 4
52 5 × 4

52 =
20
52 (5 − 0.81)2 = 17.5561 4

52 × 17.5561 = 1.3505

10 1
52 10 × 1

52 =
10
52 (10 − 0.81)2 = 84.4561 1

52 × 84.0889 = 1.6242

0 35
52 0 × 35

52 = 0 (0 − 0.81)2 = 0.6561 35
52 × 0.6561 = 0.4416

E(X) = 0.81 V(X) = 3.4246
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Random variables Variability in random variables

Variability of a discrete random variable

For the previous card game example, how much would you expect the
winnings to vary from game to game?

X P(X) X P(X) (X − E(X))2 P(X) (X − E(X))2

1 12
52 1 × 12

52 =
12
52 (1 − 0.81)2 = 0.0361 12

52 × 0.0361 = 0.0083

5 4
52 5 × 4

52 =
20
52 (5 − 0.81)2 = 17.5561 4

52 × 17.5561 = 1.3505

10 1
52 10 × 1

52 =
10
52 (10 − 0.81)2 = 84.4561 1

52 × 84.0889 = 1.6242

0 35
52 0 × 35

52 = 0 (0 − 0.81)2 = 0.6561 35
52 × 0.6561 = 0.4416

E(X) = 0.81 V(X) = 3.4246

SD(X) =
√

3.4246 = 1.85
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Random variables Linear combinations of random variables

Linear combinations

A linear combination of random variables X and Y is given by

aX + bY

where a and b are some fixed numbers.

The average value of a linear combination of random variables is
given by

E(aX + bY) = a × E(X) + b × E(Y)
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Random variables Linear combinations of random variables

Calculating the expectation of a linear combination

On average you take 10 minutes for each statistics homework problem
and 15 minutes for each chemistry homework problem. This week
you have 5 statistics and 4 chemistry homework problems assigned.
What is the total time you expect to spend on statistics and physics
homework for the week?

E(5S + 4C) = 5 × E(S) + 4 × E(C)

= 5 × 10 + 4 × 15

= 50 + 60

= 110 min
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Random variables Variability in linear combinations of random variables

Linear combinations

The variability of a linear
combination of two independent random variables is calculated as

V(aX + bY) = a2 × V(X) + b2 × V(Y)

The standard deviation of the linear combination is the square
root of the variance.

Note: If the random variables are not independent, the variance calculation gets a

little more complicated and is beyond the scope of this course.
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Random variables Variability in linear combinations of random variables

Calculating the variance of a linear combination

The standard deviation of the time you take for each statistics home-
work problem is 1.5 minutes, and it is 2 minutes for each chemistry
problem. What is the standard deviation of the time you expect to
spend on statistics and physics homework for the week if you have 5
statistics and 4 chemistry homework problems assigned?

V(5S + 4C) = 52 × V(S) + 42 × V(C)

= 25 × 1.52 + 16 × 22

= 56.25 + 64

= 120.25
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Random variables Variability in linear combinations of random variables

Calculating the variance of a linear combination

The standard deviation of the time you take for each statistics home-
work problem is 1.5 minutes, and it is 2 minutes for each chemistry
problem. What is the standard deviation of the time you expect to
spend on statistics and physics homework for the week if you have 5
statistics and 4 chemistry homework problems assigned?
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Random variables Recap

Practice

A casino game costs $5 to play. If the first card you draw is red, then
you get to draw a second card (without replacement). If the second
card is the ace of clubs, you win $500. If not, you don’t win anything,
i.e. lose your $5. What is your expected profits/losses from playing
this game? Remember: profit/loss = winnings - cost.

(a) A profit of 5¢

(b) A loss of 10¢

(c) A loss of 25¢

(d) A loss of 30¢
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Random variables Recap

Practice

A casino game costs $5 to play. If the first card you draw is red, then
you get to draw a second card (without replacement). If the second
card is the ace of clubs, you win $500. If not, you don’t win anything,
i.e. lose your $5. What is your expected profits/losses from playing
this game? Remember: profit/loss = winnings - cost.

(a) A profit of 5¢

(b) A loss of 10¢

(c) A loss of 25¢

(d) A loss of 30¢

Event Win Profit: X P(X) X × P(X)

Red, A♣ 500 500 - 5 = 495 26
52 ×

1
51 = 0.0098 495 × 0.0098 = 4.851

Other 0 0 - 5 = -5 1 − 0.0098 = 0.9902 −5 × 0.9902 = −4.951

E(X) = −0.1
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Random variables Recap

Fair game

A fair game is defined as a game that costs as much as its expected
payout, i.e. expected profit is 0.

Do you think casino games in Vegas cost more or less than their ex-
pected payouts?

If those games cost less than their
expected payouts, it would mean that the
casinos would be losing money on
average, and hence they wouldn’t be able
to pay for all this:

Image by Moyan Brenn on Flickr http:// www.flickr.com/ photos/ aigle dore/ 5951714693.
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Random variables Recap

Simplifying random variables

Random variables do not work like normal algebraic variables:

X + X , 2X

E(X + X) = E(X) + E(X)
= 2E(X)

E(2X) = 2E(X)

Var(X + X) = Var(X) + Var(X) (assuming independence)

= 2 Var(X)

Var(2X) = 22 Var(X)
= 4 Var(X)

E(X + X) = E(2X), but Var(X + X) , Var(2X).
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Random variables Recap

Adding or multiplying?

A company has 5 Lincoln Town Cars in its fleet. Historical data show
that annual maintenance cost for each car is on average $2,154 with
a standard deviation of $132. What is the mean and the standard
deviation of the total annual maintenance cost for this fleet?

Note that we have 5 cars each with the given annual maintenance
cost (X1 + X2 + X3 + X4 + X5), not one car that had 5 times the given
annual maintenance cost (5X).

E(X1 + X2 + X3 + X4 + X5) = E(X1) + E(X2) + E(X3) + E(X4) + E(X5)
= 5 × E(X) = 5 × 2, 154 = $10, 770

Var(X1 + X2 + X3 + X4 + X5) = Var(X1) + Var(X2) + Var(X3) + Var(X4) + Var(X5)
= 5 × V(X) = 5 × 1322 = $87, 120

SD(X1 + X2 + X3 + X4 + X5) =
√

87, 120 = 295.16
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Continuous distributions

1 Defining probability

2 Conditional probability

3 Sampling from a small population

4 Random variables

5 Continuous distributions
From histograms to continuous distributions
Probabilities from continuous distributions

OpenIntro Statistics, 2nd Edition

Chp 2: Probability



Continuous distributions

Continuous distributions

Below is a histogram of the distribution of heights of US adults.
The proportion of data that falls in the shaded bins gives the
probability that a randomly sampled US adult is between 180 cm
and 185 cm (about 5’11” to 6’1”).

height (cm)
140 160 180 200
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Continuous distributions From histograms to continuous distributions

From histograms to continuous distributions

Since height is a continuous numerical variable, its probability density
function is a smooth curve.

height (cm)
140 160 180 200
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Continuous distributions Probabilities from continuous distributions

Probabilities from continuous distributions

Therefore, the probability that a randomly sampled US adult is
between 180 cm and 185 cm can also be estimated as the shaded
area under the curve.

height (cm)
140 160 180 200
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Continuous distributions Probabilities from continuous distributions

By definition...

Since continuous probabilities are estimated as “the area under the
curve”, the probability of a person being exactly 180 cm (or any exact
value) is defined as 0.
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