
Applied Multivariate Analysis, Notes
for course of Lent 2004, MPhil in

Statistical Science

P.M.E.Altham, Statistical Laboratory, University of Cambridge.

April 13, 2006



2

Note added April 2006: these are essentially my original notes, but I have
just done a little tidying up, and have included a couple of extra graphs for
clarity.
All of the statistical techniques described may be implemented in Splus or
in R: see

http://www.statslab.cam.ac.uk/~pat/misc.ps

for examples.
I have also appended the Exercises sheet at the end of this set of notes, for
convenience.
There are 6 Chapters in all, intended for a 16-hour course, of which about 8
hours should be practical classes: I used R or S-Plus for these.

Contents
Chapter 1. Properties of the multivariate normal distribution.
Chapter 2. Estimation and testing for the multivariate normal distribution,
multivariate anova, linear discriminant analysis.
Chapter 3. Principal components analysis.
Chapter 4. Cluster analysis, constructing a dissimilarity matrix and a den-
drogram.
Chapter 5. Tree-based methods, ie decision/classification trees.
Chapter 6. Classical multidimensional scaling.
Exercises.

Chapter 1. Properties of the multivariate normal distribution
The multivariate normal distribution is the basis for many of the classical
techniques in multivariate analysis. It has many beautiful properties. Here
we mention only a few of these properties, with an eye to the statistical
inference that will come in Chapter 2.
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Definition and Notation.
We write

X ∼ Np(µ, V )

if the p−dimensional random vector X has the pdf

f(x|µ, V ) ∝ exp[−(x − µ)TV −1(x − µ)]/2

for xεRp.
The constant of proportionality is 1/

√

(2π)p|V |, and we use the notation |V |
as the determinant of the matrix V .
Then this pdf has ellipsoidal contours, ie

f(x|µ, V ) = constant

is the equation

(x − µ)T V −1(x − µ) = constant

which is an ellipse (for p = 2) or an ellipsoid (for p > 2) centred on the point
µ, with shape determined by the matrix V .
The characteristic function of X is say φ(t) = E(exp itT X), and you can
check that

φ(t) = exp(itT µ − tT V t/2)

(using the fact that
∫

x f(x|µ, V )dx = 1).
Furthermore, by differentiating φ(t) with respect to t and setting t = 0, you
can see that

E(X) = µ,

similarly, differentiating again and setting t = 0 shows you that

E(X − µ)(X − µ)T = V.

V is the covariance matrix of X.
By definition, uTV u ≥ 0 for any vector u, ie the matrix V is positive semi-
definite.
Here is one possible characterisation of the multivariate normal distribution:
X is multivariate normal if and only if
for any fixed vector a, aT X is univariate normal.

Partitioning the normal vector X
Take X1 as the first p1 elements of X, and X2 as the last p2 elements, where
p = p1 + p2.
Assume as before that X ∼ N(µ, V ), and now suppose that µT = (µT

1 , µT
2 ),

with V partitioned in a corresponding fashion,

V =

(

V11 V12

V21 V22

)
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then, for i = 1, 2, Xi ∼ N(µi, Vii),
and

cov(X1, X2) = E(X1 − µ1)(X2 − µ2)
T = V12 = V T

21

so that X1, X2 are independent iff V12 is a matrix with every element 0.

Linear transformation of a normal X
If X ∼ N(µ, V ) and C is an m×p constant matrix, then CX ∼ N(Cµ, CV CT ).

Diagonalisation
Suppose X ∼ N(µ, V ) and V is a positive-definite matrix, with eigen-values
λ1, . . . , λp say (which are then > 0, since V is positive-definite). Let u1, . . . , up

be the corresponding eigen-vectors of V , thus

V ui = λiui, for 1 ≤ i ≤ p,

and
uT

i uj = 0 for i 6= j, 1 for i = j,

ie the eigen-vectors are mutually orthogonal, and each is of length 1.
Define U as the p × p matrix whose columns are (u1, . . . , up). Then

UT X ∼ Np(U
T µ, UT V U).

But
uT

j V ui = λiu
T
j ui

and this is λi for i = j, 0 otherwise. Hence

UT V U = diag(λ1, . . . , λp).

Thus, given V , we can always construct an orthogonal matrix U such that if
Y = UT X, then Y1, . . . , Yp are independent normal variables (with variances,
λ1, . . . , λp in fact).
Exercises.
i) Given X ∼ N(µ, V ), modify the above proof to construct a matrix D such
that

DX ∼ N(Dµ, Ip)

where Ip is the p × p identity matrix.
Hence
ii) show that (X − µ)T V −1(X − µ) is distributed as χ2, with p df.

Less familiar facts about the normal distribution
Conditioning.
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Take X ∼ N(µ, V ) and partition the vector X as before, so that XT =
(XT

1 , XT
2 ). We will prove that

X1|(X2 = x2) ∼ N(ν1, V11.2) say

where
ν1 = µ1 + V12V

−1
22 (x2 − µ2), the conditional mean vector,

and V11.2 = V11 − V12V
−1
22 V21, the conditional covariance matrix.

(Observe that V11.2 is free of x2.)
Proof
Note that we can always derive a conditional pdf as

f(x1|x2) = f(x1, x2)/f(x2)

(ie joint pdf divided by marginal pdf), but in the current proof we employ a
MORE CUNNING argument. (Fine if you know how to get started.)
Suppose the vector Y has components Y1, Y2 say, where

Y1 = X1 − V12V
−1
22 X2, and Y2 = X2.

Thus we have written Y = CX say, where

C =

(

Ip1
−V12V

−1
22

0 Ip2

)

and so Y ∼ N(Cµ, CV CT ), and you can check that

Cµ =

(

µ1 − V12V
−1
22 µ2

µ2

)

and

CV CT =

(

V11.2 0
0 V22

)

(Multiply out as if we had 2 × 2 matrices).
Hence Y1 and Y2 are independent vectors, ie X1 − V12V

−1
22 X2 is independent

of X2.
Thus the distribution of (X1 − V12V

−1
22 X2)|(X2 = x2) is the same as the

distribution of (X1 − V12V
−1
22 X2), which is Normal with covariance matrix

V11.2.
Hence (X1 − V12V

−1
22 X2)|(X2 = x2) is Normal with covariance matrix V11.2.

Now E(Y1) = µ1 − V12V
−1
22 µ2.

Hence X1|(X2 = x2) has distribution N(µ1 + V12V
−1
22 (x2 − µ2), V11.2), which

is the required result.
Note
i)E(X1|X2 = x2) = µ1 + V12V

−1
22 (x2 − µ2), a linear function of x2, as we

should expect,
ii)

var(X1|X2 = x2) = V11 − V12V
−1
22 V21 ≤ V11 = var(X1)
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(ie conditional variance is ≤ marginal variance)
in the sense that we take A ≤ B for matrices A, B if B − A is a positive
definite matrix.
Here

var(X1|X2 = x2) = var(X1)

iff V12 = 0, in which case X1, X2 are independent.
The correlation coefficient.
We take

X =









X1
...

Xp









as before, and take V as the covariance matrix of X.
Definition The Pearson correlation coefficient between Xi, Xj is

ρij = corr(Xi, Xj) = vij/
√

(viivjj).

(ρij) is the correlation matrix of X.
Check: by definition, ρ2

ij ≤ 1, with = iff Xi is a linear function of Xj .
With

X =

(

X1

X2

)

with X1, X2 now of dimensions p1, p2 respectively, we know that

var(X1|X2 = x2) = V11 − V12V
−1
22 V21.

We could use this latter matrix to find the conditional correlation of, say,
X1i, X1j, conditional on X2 = x2.
Exercise.
Suppose X1 = ε1 +aY and X2 = Y , where Y ∼ N(0, V22) and ε1 ∼ N(0, Ip1

),
independently of Y , and a is a p1×p2 constant matrix. Show that, conditional
on X2 = x2, the components of X1 are independent.
Clearly, for this example

var(X) =

(

I + aV22a
T aV22

V22a
T V22

)

.

Two useful expressions from V −1

First we find an expression for the conditional correlation, say of X1, X2

conditional on the values of the remaining variables.
Suppose X ∼ N(0, V ), and write Xi as the ith component of X. Then

f(x) ∝ exp−xT ax/2,

where we have defined a = V −1. Thus, expanding out the quadratic expres-
sion, we see that

f(x1, x2, z) ∝ exp−(a11x
2
1 + 2a12x1x2 + a22x

2
2 + terms linear in x1, x2)/2,
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where zT = (x3, . . . , xp). Thus

f(x1, x2|z) =
f(x1, x2, z)

f(z)
∝ exp−(a11(x1−µ1)

2+2a12(x1−µ1)(x2−µ2)+a22(x2−µ2)
2)/2

where we have defined µ1 = E(X1|z) and µ2 = E(X2|z), thus µ1, µ2 are
linear functions of z, but not of interest to us at present. We compare the
above expression for f(x1, x2|z) with the bivariate normal density to find an
expression for corr(X1, X2|z) in terms of elements of a.
Suppose Y is bivariate normal, with E(Yi) = mi, and var(Yi) = σ2

i , and
cor(Y1, Y2) = ρ, thus

(

Y1

Y2

)

has pdf g(y1, y2) ∝ exp−(b2
1 − 2ρb1b2 + b2

2)/2(1 − ρ2)

where we have written bi = (yi − mi)/σi for i = 1, 2.
Look at these two expressions for a density function and compare coefficients
in the quadratic. You will then see that

−ρ = a12/
√

a11a22,

ie corr(X1, X2|Z = z) = −a12/
√

a11a22, where a is the inverse of V , the
covariance matrix.
Similarly, if we now define

z =









x2
...

xp









,

you will now see by a similar argument, that

f(x1, z) ∝ exp−(a11x
2
1 + . . .)/2

and hence var(X1|Z = z) = 1/a11, where a = V −1 as before.
If 1/a11 is small (compared with var(X1)), then X1 will be (almost) a linear
function of X2, . . . , Xp.
In S-Plus, the matrix V has inverse

solve(V)

(recall that the original use of matrix inverse is to SOLVE a system of linear
equations.)
Check If we write

V =

(

v11 bT

b V22

)

,

then
var(X1|X2 = x2, . . . , Xp = xp) = v11 − bT V −1

22 b.

Exercises
i) Suppose







X1

X2

X3





 ∼ N(., .),
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with ρij = corr(Xi, Xj).
Show that

Corr(X1, X2|X3 = x3) = (ρ12 − ρ13ρ23)/
√

((1 − ρ2
13)(1 − ρ2

23).

Hence show that if ρ12 − ρ13ρ23 = 0, then we may represent the dependence
graph of (X1, X2, X3) as

X1----X3-----X2

ie X1 and X2 are ‘linked’ only through X3.
(This is rather a ‘poor-man’s graphic’: doubtless you can do it in a better
way.)

This would be the case if, for example,
X1 = α1X3 + ε1,
X2 = α2X3 + ε2

where ε1, ε2, X3 are independent random variables.
ii) Suppose X ∼ N(0, V ) and XT = (X1, X

T
2 ), where X1, X2 are of dimen-

sions 1, p − 1 respectively.
The multiple correlation coefficient between X1, X2 is defined as the
maximum value of corr(X1, α

T X2), maximising wrt the vector α.
Show that this maximising α is given by

αT ∝ V12V
−1
22

where we have partitioned V in the obvious way, and find the resulting
multiple correlation coefficient.
Hint: cov(X1, α

T X2) = αT V21, and var(αT X2α) = αTV22α. So the problem
is equivalent to:
maximise αT V21 subject to αTV22α = 1. We write down the corresponding
Lagrangian.
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Chapter 2 Estimation and Testing for the multivariate normal
distribution
2.1. Maximum Likelihood Estimation (mle)
Let x1, . . . , xn be a random sample (rs) from Np(µ, V ). Then

f(x1, . . . , xn|µ, V ) ∝ 1/|V |n/2 exp−Σn
1 (xi − µ)T V −1(xi − µ)/2.

Now

Σ(xi − µ)T V −1(xi − µ) = Σ(xi − x̄ + x̄ − µ)TV −1(xi − x̄ + x̄ − µ)

where x̄ = Σxi/n. Thus

Σ(xi − µ)T V −1(xi − µ) = Σ(xi − x̄)T V −1(xi − x̄) + n(x̄ − µ)TV −1(x̄ − µ).

(Check this.) Hence −2 log f(x1, . . . , xn|µ, V )

= n log |V | + Σ(xi − x̄)T V −1(xi − x̄) + n(x̄ − µ)TV −1(x̄ − µ).

Recall, the trace of a square matrix is the sum of its diagonal elements.
Now, for any vector u, uTV −1u is a scalar quantity, and hence is equal to its
trace, ie

uTV −1u = tr(uTV −1u)

and this in turn is equal to

tr(V −1uuT ).

Further, for any matrices, tr(A + B) = tr(A) + tr(B).
Hence we may write −2 log-likelihood as

= n log(|V |) + tr(V −1Σ(xi − x̄)(xi − x̄)T + n(x̄ − µ)TV −1(x̄ − µ)

= n log(|V |) + tr(V −1nS) + n(x̄ − µ)TV −1(x̄ − µ),

where

S = (1/n)Σ(xi − x̄)(xi − x̄)T ,

the sample covariance matrix.
Thus we see that
(i) (x̄, S) is sufficient for (µ, V ), by the factorisation theorem, and
(ii) it is easy to minimise −2 loglikelihood, with respect to µ, for V a fixed
positive definite matrix.
Clearly,

(x̄ − µ)T V −1(x̄ − µ) ≥ 0,

with = if and only if µ = x̄.
Hence µ̂ = x̄, (whether or not V is known).
Finally, we wish to minimise the expression

l(V ) = nlog|V | + ntr(V −1S),
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with respect to V , for V a positive-definite matrix. (Of course, experience
with the univariate normal tells us to expect the answer V̂ = S.)
Observe that, at V = S,

l(V ) = nlog|S|+ ntr(Ip) = nlog|S| + np.

a) Here is the slick way to achieve the minimisation.

Note that we may write

l(V ) = −n log|V −1| + n tr(V −1S),

and hence

l(V ) = −n log|V −1S| + n tr(V −1S) + constant.

But each of V, S is symmetric and positive-definite. Suppose λ is an eigen-
value of V −1S, with V −1Su = λu.
Thus

Su = λV u = λLLT u,

say, where L is a real non-singular matrix. Hence

L−1Su = λLT u

and so
L−1S(L−1)T )(LT u) = λ(LT u).

Thus, λ is an eigen-value of the symmetric positive-definite matrix L−1S(L−1)T ,
and hence λ is real and positive. Let λ1, . . . , λp be the eigen-values of
L−1S(L−1)T .
Further we may write

|V −1S| = |(LT )−1L−1S| = |L−1S(L−1)T | = Πλi,

similarly,

tr(V −1S) = tr((LT )−1L−1S) = tr(L−1S(L−1)T ) = Σλi.

Thus, our problem reduces to the problem,
find λ1, . . . , λp ≥ 0 to minimise

l(V ) = −n log Πλi + nΣλi.

Thus,
l(V ) = nΣi(λi − log λi).

Now find
∂l(λ)

∂λi
, and

∂2l(λ)

∂λ2
i
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in order to show that l(V ) is minimised with respect to λ1, . . . , λp > 0 by
λi = 1 for i = 1, . . . , p, thus

V −1S = Ip, and so V = S,

as we would expect, from the 1-dimensional case.
We write V̂ = S, we shall show later that this is not an unbiased estimator
of V .

b) The brute force method.
Put Ψ = V −1; our problem is to choose Ψ to minimise

f(Ψ) = −n log |Ψ| + Σkz
T
k Ψzk,

where we have written zk = xk − x̄ for k = 1, . . . , n. Heroic feats (well,
perhaps mildly heroic) of calculus (to be demonstrated by your lecturer)
enable us to write down the equations

∂f(Ψ)

∂Ψij
= 0

and hence find the solution
Ψ−1 = S,

as above. Here is how to get started.
Note that we consider the more general problem: choose a matrix Ψ to
minimise f(Ψ). We do not include the constraint thatΨ is a symmetric
positive definite matrix.

∂f(Ψ)

∂Ψij
= (−n/det(Ψ))

∂detΨ

∂Ψij
+ Σzkizkj

Hence
∂f(Ψ)

∂Ψij
= 0

is equivalent to

(1/det(Ψ))
∂detΨ

∂Ψij

= Sij

using the fact that Sij = Σzkizkj .

The distribution of the mle’s
Notation, for reminder. Take X1, . . . , Xn a random sample from Np(µ, V ),

and write µ̂ = X̄, V̂ = S. Recall, if p = 1,
X̄ ∼ N(µ, V/n) and nS/(σ2) ∼ χ2

n−1, independently, (where V = σ2). We
seek the multivariate version of this result, which we will then apply.
Here is the easy part of the result: clearly X1, . . . , Xn ∼ NID(µ, V ) implies
that X̄ ∼ N(µ, V/n).
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For the rest, we first need a multivariate version of the χ2 distribution: this
is the Wishart distribution, defined as follows.
Take Zα, 1 ≤ α ≤ n − 1 as NID(0, V ) where of course V is a p × p matrix.
Then we say that

Σn−1
1 ZαZT

α

has the Wishart distribution, parameters n − 1, V .
Fact

nS = Σn
1 (Xi − X̄)(Xi − X̄)T

which is of course a random matrix, is distributed as

Σn−1
1 ZαZT

α ,

independently of X̄.
Proof is omitted (but see eg Seber 1984).
Exercise. Note that nS = ΣXiX

T
i − nX̄X̄T . Hence show that E(nS) =

(n − 1)V .
Testing hypotheses for µ when V is known, for example, to test H0 :
µ = µ0.
Now since

√
n(X̄ −µo) ∼ N(0, V ) if H0 is true, we refer n(X̄ −µ0)

T V −1(X̄ −
µ0) to χ2

p to test H0.
Similarly, we can contruct a 95% confidence region for µ from X̄.
Testing hypotheses for µ when V is unknown:
We know that X̄ ∼ N(µ, V/n), and hence (X̄ − µ)

√
n ∼ N(0, V ), indepen-

dently of our estimate S of V ; we know that nS has the Wishart distribution
given above.
It therefore seems obvious that our test statistic, eg of H0 : µ = µ0, must be

constant (X̄ − µ)TS−1(X̄ − µ)

having distribution (on H0) which is free of the unknown V , and is the
multivariate version of tn−1.
This is actually true, but is surprisingly lengthy to prove: see standard texts,
eg Seber, for proof.
For the present, we merely note that Hotelling’s T 2 is defined as

T 2 = n(x̄ − µ0)
T (nS/(n − 1))−1(x̄ − µ0)

and the exact distribution of T 2 on H0 is known,
it is obviously F1,n−1 if p = 1,
and for general p,

n − p

p

T 2

n − 1
∼ Fp,n−p.

Again, we omit the proof.
But, we note that this result can be used to find the multivariate version of
the 2-sample t-test:
eg, take X1, . . . , Xm ∼ NID(µ1, V )
and Y1, . . . , Yn ∼ NID(µ2, V ) and assume that the X’s are independent of
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the Y ’s.
Then

X̄ − Ȳ ∼ N(µ1 − µ2, (1/m + 1/n)V )

independently of

(m + n)S = Σi(Xi − X̄)(Xi − X̄)T + Σj(Yj − Ȳ )(Yj − Ȳ )T

from which we could construct a Hotelling’s T 2 statistic, of known distribu-
tion, to test H0 : µ1 = µ2.

Exercise.
Let X1, . . . , Xn be a random sample from N(µ, V ), where µ, V are unknown.
Show that T 2, as defined above, is equivalent to the generalized likelihood
ratio test of H0 : µ = µ0.
Hint: you will need the matrix identity

|A + uuT | = |A|(1 + uT A−1u)

where A is a positive-definite p× p matrix, and u is a p−dimensional vector.
Here’s how the matrix identity is proved:

Suppose A = LLT where L is a real and non-singular matrix. Then we
see that

A + uuT = LLT + uuT = L(I + vvT )LT

where we have defined the vector v to be L−1u. Thus we see that

det(A+uuT ) = |L|det(I+vvT )|LT | = det(LLT )det(I+vvT ) = |A|det(I+vvT ).

But, det(I + vvT ) is the product of the eigen values of this matrix. Now,

(I + vvT )v = (1 + vTv)v

hence (1 + vT v) is an eigen-value of this matrix, and it corresponds to eigen
vector v. Take x any vector orthogonal to v, then

(I + vvT )x = 1x

hence every other eigen value of (I +vvT ) is 1. Thus the product of the eigen
values is (1 + vTv), and so we see that

det(A + uuT ) = |A|(1 + uTA−1u)

as required.

Discussion of the derivation of a test criterion via the generalized likelihood
ratio method leads naturally to the next topic:
The multivariate analysis of variance

manova()
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in S-Plus.
First an example, from

library(MASS)

of the famous ‘painters’ data, for which we may wish to apply

manova(cbind(Composition,Drawing, Colour, Expression) ~ School, painters)

An 18th century art critic called de Piles rated each of 54 painters, on a
scale of 0 to 20, on each of the following 4 variables, Composition, Drawing,
Colour and Expression. The painters are also classified according to their
‘School’: these are
A= Renaissance, B= Mannerist, C= Seicento, D= Venetian, E= Lombard,
F= 16thC, G= 17thC, and finally H= French. Here are the data

Composition Drawing Colour Expression School

Da Udine 10 8 16 3 A

Da Vinci 15 16 4 14 A

Del Piombo 8 13 16 7 A

Del Sarto 12 16 9 8 A

Fr. Penni 0 15 8 0 A

Guilio Romano 15 16 4 14 A

Michelangelo 8 17 4 8 A

Perino del Vaga 15 16 7 6 A

Perugino 4 12 10 4 A

Raphael 17 18 12 18 A

F. Zucarro 10 13 8 8 B

Fr. Salviata 13 15 8 8 B

Parmigiano 10 15 6 6 B

Primaticcio 15 14 7 10 B

T. Zucarro 13 14 10 9 B

Volterra 12 15 5 8 B

Barocci 14 15 6 10 C

Cortona 16 14 12 6 C

Josepin 10 10 6 2 C

L. Jordaens 13 12 9 6 C

Testa 11 15 0 6 C

Vanius 15 15 12 13 C

Bassano 6 8 17 0 D

Bellini 4 6 14 0 D

Giorgione 8 9 18 4 D

Murillo 6 8 15 4 D

Palma Giovane 12 9 14 6 D

Palma Vecchio 5 6 16 0 D

Pordenone 8 14 17 5 D

Tintoretto 15 14 16 4 D

Titian 12 15 18 6 D

Veronese 15 10 16 3 D
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Albani 14 14 10 6 E

Caravaggio 6 6 16 0 E

Corregio 13 13 15 12 E

Domenichino 15 17 9 17 E

Guercino 18 10 10 4 E

Lanfranco 14 13 10 5 E

The Carraci 15 17 13 13 E

Durer 8 10 10 8 F

Holbein 9 10 16 13 F

Pourbus 4 15 6 6 F

Van Leyden 8 6 6 4 F

Diepenbeck 11 10 14 6 G

J. Jordaens 10 8 16 6 G

Otho Venius 13 14 10 10 G

Rembrandt 15 6 17 12 G

Composition Drawing Colour Expression School

Rubens 18 13 17 17 G

Teniers 15 12 13 6 G

Van Dyck 15 10 17 13 G

Bourdon 10 8 8 4 H

Le Brun 16 16 8 16 H

Le Suer 15 15 4 15 H

Poussin 15 17 6 15 H

You could argue that the format of this dataset is typical of a pattern recog-
nition problem: suppose that a newly discovered old master, say Patriziani,
has a a set of scores (Composition=15, Drawing= 19, Colour=17, Expres-
sion=3), can we use the above ‘Training Set’ to assign this new painter to
the correct School?
You could also reasonably argue that any analysis of the above data-set must
start by suitable plots: this is what we will do in the practical classes. Try

attach(painters)

plot(Composition,Drawing, type="n")

text(Composition,Drawing, c("A","B","C","D","E","F","G","H")[School])

But here we will restrict ourselves to a much more specific problem (and this
will turn out to give the generalization of the well-known 1-way anova).
The model: assume that we have independent observations from g different
groups,

x
(ν)
j ∼ NID(µ(ν), V ), for j = 1, . . . , nν , ν = 1, . . . , g

where Σnν = n. We wish to test

H0 : µ(1) = . . . = µ(g) = µ say, where µ, V unknown
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against

H1 : µ(1), . . . , µ(g), V all unknown.

We maximise the log-likelihood under each of H0, H1 respectively, in order
to find the likelihood ratio criterion (which of course must turn out to be the
matrix version of (ss between groups)/(ss within groups)).
Let Sν be the sample covariance matrix for the νth group.
Now -2 loglikelihood for all n observations=

−2l(µ(1), . . . , µ(g), V ) say = Σνnν(log |V |+tr(V −1Sν)+(x̄(ν)−µ(ν))T V −1(x̄(ν)−µ(ν))

= n log |V | + Σνnνtr(V
−1Sν) + Σνnν(x̄

(ν) − µ(ν))T V −1(x̄(ν) − µ(ν)).

We have already done the hard work that enables us to minimise this expres-
sion.
Verify that this is minimised under H1 by

µ̂(ν) = x̄(ν), for each ν, and V̂ = (1/n)ΣnνSν = (1/n)W say,

minH1
− 2l(µ(1), . . . , µ(g), V ) = n log |V̂ | + n tr(V̂ −1V̂ )) = n log(V̂ | + np.

Now, under H0, -2 loglikelihood = −2l(µ, V ) say

= n log |V | + Σνnνtr(V
−1Sν) + Σνnν(x̄

(ν) − µ)TV −1(x̄(ν) − µ).

We may write the second Σ term as

Σnν(x̄
(ν) − x̄ + x̄ − µ)TV −1(x̄(ν) − x̄ + x̄ − µ)

= Σnν(x̄
(ν) − x̄)T V −1(x̄(ν) − x̄) + Σnν(x̄ − µ)TV −1(x̄ − µ)

where we have defined x̄ = Σnν x̄
(ν)/n, the mean of all the observations.

Hence, under H0, -2 loglikelihood is minimised with respect to µ, V by µ̂∗ = x̄,
and

V̂ ∗ =
1

n
(ΣnνSν + Σ(x̄(ν) − x̄)(x̄(ν) − x̄)T nν)

=
1

n
(W + B)say,

where W = ‘within-groups ss’, B = ‘between-groups ss’, and

minH0
− 2l(µ, V ) = n log(1/n)|W + B| + np.

So we see that the l.r. test of H0 against H1 is to reject H0 in favour of H1

iff

log |W + B|/|W | > constant.

(Compare this with the traditional 1-way anova.) Define Λ = |W |/|W + B|.
We simplify this expression, as follows.
Now W, B are symmetric matrices, with W > 0, B ≥ 0. Put W = LLT say.
Suppose

W−1Bvj = λjvj .
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Then
Bvj = λjWvj = λjL(LT )vj ,

and so
L−1B(L−1)T (LT vj) = λjL

T vj ,

put uj = LT vj, thus
L−1B(L−1)T uj = λjuj.

Now L−1B(L−1)T is a symmetric matrix, ≥ 0, hence λj is real, and ≥ 0.
Further,

|W + B|
|W | =

|LLT + B|
|W | =

|L||LT |det(I + L−1B(LT )−1)

|W |

= det(I + L−1B(LT )−1) = Π(1 + λj).

This final quantity has known distribution, under H0.
Applications to Linear Discriminant Analysis.

discrim()

lda() # in library(MASS)

Here is the problem: given data (x
(ν)
j , 1 ≤ j ≤ nν , 1 ≤ ν ≤ g) from our g dif-

ferent groups, choose a p-dimensional vector a such that the between-groups
ss for aT x is as large as possible for a given value of the within-groups ss for
aT x,
ie maximise aT Ba subject to aT Wa = 1. Clearly, the corresponding La-
grangian is

L(a, λ) = aT Ba + λ(1 − aT WA)

giving (by differentiating wrt a)

Ba = λWa,

ie we choose a as the eigen vector corresponding to the largest eigen value
of W−1B, equivalently, LT a is the eigen vector corresponding to the largest
eigen value of L−1B(L−1)T .

An alternative approach is to use a Bayesian decision rule: this is what lies
behind the Splus function lda(). Our explanation below follows Venables and
Ripley, 2nd edition, p397 (with some minor modifications).
Suppose we have observations from a set of g classes, which correspond re-
spectively to observations from pdfs f1(x), . . . , fc(x), . . . , fg(x). Initially we
assume that all these pdf’s are known. We take a new observation, x say, and
we wish to assign it to the correct class out of C1, . . . , Cg, which have known
prior probabilities π1, . . . , πg, adding to 1. Clearly, by Bayes’ theorem, we
see that
P (new obsn belongs to class c|x) ∝ πcfc(x)
and if we have a symmetric loss-function, then we should assign the new
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observation to class c if πcfc(x) is the largest over the g classes, ie we assign
to class c if Qc is smallest, where

Qc = −2log(fc(x)) − 2logπc.

Take the special case of fc(x) as the pdf of N(µc, Vc). Then it is easily checked
that

Qc = (x − µc)
T Vc

−1(x − µc) + logdet(Vc) − 2logπc.

The quantity (x − µc)
T Vc

−1(x − µc) is called the Mahalanobis distance of x
from the class centre of Cc. Since the difference between any pair Qc, Qd say
is a quadratic function of x, this method will give quadratic boundaries of
the decision region for x, and the method is known as quadratic discriminant

analysis.
Take the special case Vc = V for all c. Then you can easily check that the
quadratic rule given above simplifies to a linear discriminant rule: we assign
x to class c if Lc is the largest, where we define

Lj = xT V −1µj − µT
j V −1µj/2 + log(πj).

In real life, of course, we do not know µ1, . . . , µg and we do not know V : so
in practice we use the ‘obvious’ estimates for them, namely the within-class
means to estimate the means, and we use W to estimate V .
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Chapter 3. Principal components analysis. (pca)

princomp()

Suppose our observation vector X ∼ N(µ, V ), so that for example, for p = 2,
µ = (0, 0)T ,

V =

(

1 ρ
ρ 1

)

Then for the special case ρ = .9, the contours of the density function will
be very elongated ellipses, and a random sample of 500 observations from
this density function has the scatter plot given here. Using y1, y2 as the
principal axes of the ellipse, we see that most of the variation in the data
can be expected to be in the y1 direction. Indeed, the 2-dimensional picture
D could be quite satisfactorily ‘collapsed’ into a 1-dimensional picture.
Clearly, if we had n points in p dimensions as our original data, it would be
a great saving if we could adequately represent these n points in say just 2
or 3 dimensions.
Formally: with X ∼ N(µ, V ), our problem is to choose a direction a1 say
to maximise var(aT

1 X), subject to aT
1 a1 = 1,

ie to choose a1 to maximise aT
1 V a1 subject to aT

1 a1 = 1.
This gives the Lagrangian

L(a1, λ1) = aT
1 V a1 + λ1(1 − aT

1 a1).

∂L

∂a1
= 0 implies V a1 = λ1a1

and hence a1 is an eigenvector of V , corresponding to eigenvalue λ1. Further

aT
1 V a1 = λ1a

T
1 a1 = λ1,
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hence we should take λ1 as the largest eigen value of V . Then the first prin-
cipal component is said to be aT

1 X: it has variance λ1.
Our next problem is to choose a2 to maximise var(aT

2 X) subject to cov(aT
1 X, aT

2 X) =
0 and aT

2 a2 = 1.
Now, using the fact that V a1 = λ1a1, we see that cov(aT

1 X, aT
2 X) = 0 is

equivalent to the condition aT
2 a1 = 0. Hence we take as the Lagrangian

L(a2, µ, λ2) = aT
2 V a2 + 2µaT

2 a1 + λ2(1 − aT
2 a2).

Now find ∂L
∂a2

and apply the constraints to show that a2 is the eigen vector
of V corresponding to its second largest eigen value, λ2.
And so on. Let us denote

λ1 ≥ λ2 ≥ . . . λp(> 0)

as the eigen values of V , and let

a1, . . . , ap

be the corresponding eigen vectors.
(Check that for the given example, with p = 2, the eigen -values are 1+ρ, 1−
ρ.)
Define Yi = aT

i X, these are the p principal components, and you can see that

Yi ∼ NID(aT
i µ, λi), for i = 1, . . . , p.

The practical application Of course, in practice the matrix V is unknown,
so we must replace it by say S, its sample estimate. Suppose our original
n × p data matrix is X, so that

X =









xT
1
...

xT
n









corresponding to n points in p dimensions. Then

nS = (XTX − nx̄T x̄)

(correcting apparent error in Venables and Ripley) where x̄ = 1T X/n is the
row vector of the means of the p variables: we have already proved that S is
is the mle of V . (Warning: you may find that (n − 1) is used as the divisor,
in some software.) Here, for example, what the S-Plus function

princomp()

does is to choose a1 to maximise aT
1 Sa1 subject to aT

1 a1 = 1, obtaining

Sa1 = λ1a1,

λ1 being the largest eigenvalue of S. Then, for example, aT
1 x1, . . . , a

T
1 xn show

the first principal component for each of the original n data points.
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Interpretation of the principal components (where possible) is very impor-
tant in practice.
The scree-plot
Plot (λ1 + · · ·+λi)/(λ1 + · · ·+λp) against i. This gives us an informal guide
as to how many components are needed for an acceptable representation of
the original data. Clearly (λ1 + · · · + λi)/(λ1 + · · · + λp) increases with i,
and is 1 for p = i, but we may hope that 3 dimensions represents the overall
picture satisfactorily, ie
(λ1 + λ2 + λ3)/(λ1 + · · ·+ λp) > 3/4, say.
The difficulty of scaling
Suppose, eg xi has 2 components, namely
x1i a length, measured in feet, and x2i a weight, measured in pounds.
Suppose that these variables have covariance matrix S.
We consider the effect of rescaling these variables, to inches and ounces re-
spectively. (1 ft= 12 inches, 1 pound = 16 ounces)
The covariance matrix for these new units is say SS, and

SS =

(

122S11 12 × 16S12

12 × 16S21 162S22

)

.

There is no simple relationship between the eigenvalues/vectors of S and
those of SS.
So the ‘picture’ we get of the data by applying pca to SS might be quite
different from what we found by pca on S.
Note, if one column of the original data matrix









xT
1
...

xT
n









has a particularly large sample variance, this column will tend to dominate
the pca picture, although it may be scientifically uninteresting. For example
in a biological dataset, this column may simply correspond to the size of the
animal.
For example, suppose our observation vector is X, and

X = lZ + ε

where Z, ε are independent, with Z ∼ N1(0, v) and εi ∼ NID(0, σ2
i ), for

i = 1, . . . , p. Then

V = var(X) = llT v + diag(σ2
1, . . . , σ

2
p).

Suppose v >> σ2
1 , . . . , σ

2
p. Then you will find that the first principal compo-

nent of V is approximately lT X; in other words Z (which may correspond to
the size of the animal) dominates the pca ‘picture’.
Further, if σ2

1 = . . . = σ2
p = σ2, then

V = llT v + σ2I
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and hence
V l = l(lT vl) + σ2l.

Suppose (wlog) that lT l = 1. Then we see that l is an eigen-vector of V
corresponding to eigen value v + σ2. If u is any vector orthogonal to l, then

V u = l(lT u)v + σ2u,

hence V u = σ2u, and so u is an eigen vector of V corresponding to eigenvalue
σ2. This is clearly an extreme example: we have constructed V to have as
its eigenvalues v + σ2 (once) and σ2, repeated p − 1 times.
The standard fixup, if there is no ‘natural scale’ for each of the columns on
the data matrix X, is to standardise so that each of the columns of this
matrix has sample variance 1. Thus, instead of finding the eigen values of
S, the sample covariance matrix, we find the eigen values of R, the sample
correlation matrix. This has the following practical consequences:
i) Σλi = tr(R) = p since Rii = 1 for each i.
ii) the original measurements (eg height, weight, price) are all given equal
weight in the pca.
So this is quite a draconian ‘correction’.
Factor analysis, which is a different technique, with a different model,
attempts to remedy this problem, but at the same time introduces a whole
new raft of difficulties.

factanal()

For this reason, we discuss factor analysis only very briefly, below. It is well
covered by S-Plus, and includes some thoughtful warnings.
Formal definition of Factor analysis.
We follow the notation of Venables and Ripley, who give further details and
an example of the technique.
The model, for a single underlying factor: Suppose that the observation
vector X is given by

X = µ + λf + u

where µ is fixed, and λ is a fixed vector of ‘loadings’ and f ∼ N1(0, 1) and
u ∼ Np(0, Ψ) are independent, and Ψ is an unknown diagonal matrix. Our
random sample consists of

Xi = µ + λfi + ui

for i = 1, . . . , n. This gives X1, . . . , Xn a rs from N(µ, V ) where

V = λλT + Ψ.

For k < p common factors, we have

Xi = µ + Λfi + ui,

for i = 1, . . . , n with f ∼ Nk(0, Ik) and u ∼ Np(0, Ψ) independent, with Λ
a fixed, unknown matrix of loadings, and with Ψ is an unknown diagonal
matrix as before, so that X1, . . . , Xn is a rs from N(µ, V ) where

V = ΛΛT + Ψ.
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We have a basic problem of unidentifiability, since

Xi = µ + Λfi + ui

is the same model as

Xi = µ + (ΛG)(GTfi) + ui

for any orthogonal matrix G.
Choosing an ‘appropriate’ G is known as choosing a rotation. In the ml
fit of the factor analysis model above, we choose Λ, Ψ (subject to a suitable
constraint) to maximise

−tr(V −1S) + log |(V −1S)|.

Note that the number of parameters in V is p + p(p − 1)/2 = p(p + 1)/2.
Define

s = p(p + 1)/2 − [p(k + 1) − k(k − 1)/2] = (p − k)2/2 + (p + k)/2

as the degrees of freedom of this ml problem. Then
s = number of parameters in V − (number of parameters in Λ, Ψ) (taking
account of the rotational freedom in Λ, since only ΛΛT is determined).
We assume s ≥ 0 for a solution (otherwise we have non-identifiability).
If s > 0, then in effect, factor analysis ‘chooses the scaling of the variables
via Ψ̂’, whereas in pca, the user must choose the scaling.

Lastly, here is another view of pca on S, the sample covariance matrix, as
the solution to a minimisation problem.
This is a ‘data-analytic’ rather than an mle approach.
Suppose we have observations y1, . . . , ynεR

p, take Σyi = 0 for simplicity, so
that ȳ = 0.
Take k < p and consider the problem of finding the best-fitting k-dim linear
subspace for (y1, . . . , yn), in the following sense:
take k orthonormal vectors a1, . . . , ak (ie such that aT

i aj = δij for i, j =
1, . . . , k) to minimise

Σ(yi − Pyi)
T (yi − Pyi)

where Pyi is the projection of yi onto

Ω = `(a1, . . . , ak)

the linear subspace spanned by a1, . . . , ak.
Solution.
Any orthonormal set a1, . . . , akεR

p may be extended to

a1, . . . , ak, . . . , ap
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an orthonormal basis of RP . Furthermore, any yεRp may then be rewritten
as

y = Σp
1(y

Tai)ai

and then
Py = Σk

1(y
Tai)ai,

and so
y − Py = Σp

k+1(y
Tai)ai;

and
(y − Py)T (y − Py) = Σp

k+1(y
Tai)

2.

Hence, our problem is to choose a1, . . . , ak to minimise

Σn
j=1Σ

p
i=k+1(y

T
j ai)

2.

But
Σn

j=1y
T
j yj = Σn

j=1Σ
p
i=1(y

T
j ai)

2

is fixed, so our problem is therefore to maximise

Σn
j=1Σ

k
i=1(y

T
j ai)

2,

and this last term is
Σk

i=1a
T
i (Σn

j=1yjy
T
j )ai.

Thus our problem is to choose a1, . . . , ak subject to aT
i aj = δij to maximise

Σk
1a

T
i Sai, where

S ∝ Σn
1yjy

T
j .

We have already shown how to solve this problem, at the beginning of this
Chapter. The solution is to take a1 as the eigenvector of S corresponding to
the largest eigen value λ1, and so on.
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Chapter 4. Cluster Analysis
Here we seek to put n objects into (disjoint) groups, using data on d vari-
ables.
The data consist of points x1, ..., xn say, giving rise to an n × d data matrix.
xi may consist of continuous, or discrete variables or a mixture of the two,
eg “red hair, blue eyes, 1.78 m, 140 kg, 132 iq ” and so on.
There are NO probability models involved in cluster analysis: in this sense
the method is said to be ‘data-analytic’.
We start by constructing from x1, ..., xn the DISSIMILARITY matrix (drs)
between all the individuals, or equivalently the SIMILARITY matrix, say
(crs).
For example, we might take drs = |xr − xs|, Euclidean distance.
There are 3 types of clustering available
i) hierarchical clustering

hclust()

in which we form a dendrogram of clusters (like a tree, upside down) by
grouping points into clusters, and then grouping the clusters themselves into
bigger clusters, and so on, until all n points form one big cluster.
See Swiss cantons data-set as an example.
ii) we could partition the n points into a given number, eg 4, of non-overlapping
clusters

kmeans()

iii) we could partition the n points into overlapping clusters.

How to construct the dissimilarity matrix
Take any 3 objects, say A, B, C.
Let d(A, B) be the dissimilarity between A and B.
It is reasonable to require the following of the function d(, ).

d(A, B) ≥ 0, d(A, B) = 0 iff A = B, d(A, C) ≤ d(A, B) + d(B, C).

The S-Plus function

dist()

produces, for n points, the n(n − 1)/2 distances, eg with
Euclidean, |xr − xs| as default
or ‘manhattan’ (also called city-block), ie Σi|xri − xsi|
or ‘maximum’, ie maxi|xri − xsi|.
It also allows for binary variables, for example if
xr = (1, 0, 0, 1, 1, 0, 0) and
xs = (1, 0, 0, 0, 0, 0, 0) then the simple matching coefficient gives
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d(xr, xs) = 1 − 5/7 (this counts all matches)
but the Jaccard coefficient gives
d(xr, xs) = 1−1/3 (just one ‘positive’ match in the 3 places where match-

ing matters).

What do we do with the distance matrix when we’ve got it ?
The S-Plus function hclust() has 3 possible methods, our problem being that
we have to decide how to define the distance or dissimilarity between any 2
clusters.
We now describe the agglomerative technique used in hierarchical cluster-
ing.
Begin with n clusters, each consisting of just 1 point, and (drs) = D say, a
dissimilarity matrix, and a measure of dissimilarity between any 2 clusters,
say d(C1, C2) for clusters C1, C2.
Fuse the 2 nearest points into a single cluster.
Now we have n − 1 clusters.
Fuse the 2 nearest such clusters into a single cluster.
Now we have n − 2 clusters.
And so on. Finally we have one cluster containing all n objects.
This now gives us a hierarchical clustering, and for example we could sort
the n objects into 3 groups by drawing a horizontal line across the resulting
dendrogram.

The possible definitions for d(C1, C2).
i) ‘compact’ (complete linkage) d(C1, C2) = max d(i, j)
ii) ‘average’ d(C1, C2) = average d(i, j)
iii) ‘connected’ (single linkage) d(C1, C2) = min d(i, j).
(this one tends to produce long straggly clusters)

In all of i),ii),iii) we take i in C1, j in C2.
Warning: we repeat, this method is entirely ‘data-analytic’. We can’t reason-
ably ask for significance tests: eg, ‘do 3 clusters explain the data significantly
better than 2?’
(Simulation, or using random subsets of the whole data-set, may go some
way towards answering this last type of question.)
Here is a small scale example, from a subset of recent MPhil students. Each
student was asked to reply Yes or No (coded here as 1, 0 respectively) to each
of 10 (rather boring, but not embarrassing personal) questions. These were
Do you eat eggs? Do you eat meat? Do you drink coffee? Do you drink
beer? Are you a UK resident? Are you a Cambridge Graduate? Are you
Female? Do you play sports? Are you a car driver? Are you Left-handed?
The answers for this subset of students form the dataset given below.

eggs meat coffee beer UKres Cantab Fem sports driver Left.h

Philip 1 1 1 0 1 1 0 0 1 1

Chad 1 1 1 0 0 0 0 1 1 0

Graham 1 1 1 1 1 1 0 1 1 0

Tim 1 1 1 1 1 1 0 1 0 0
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Mark 1 1 0 1 1 1 0 0 0 1

Juliet 0 1 1 0 1 0 1 0 0 0

Garfield 0 1 1 1 0 0 0 1 0 0

Nicolas 1 1 1 1 0 0 0 1 1 0

Frederic 1 1 0 1 0 0 0 1 1 0

John 1 1 1 1 0 0 0 0 1 0

Sauli 1 1 0 0 1 0 0 1 1 0

Fred 1 1 1 0 0 0 0 1 0 0

Gbenga 1 1 1 0 0 0 0 1 0 0

# taking a as the data-matrix above, we compute d, the appropriate

# set of 14*13/2 interpoint distances, and present the corresponding

# 14 by 14 distance matrix

> d = dist(a, metric="binary") ; round(dist2full(d), 2)

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]

[1,] 0.00 0.50 0.33 0.44 0.38 0.62 0.78 0.56 0.67 0.50 0.50 0.62 0.62

[2,] 0.50 0.00 0.38 0.50 0.78 0.71 0.50 0.17 0.33 0.33 0.33 0.20 0.20

[3,] 0.33 0.38 0.00 0.12 0.44 0.67 0.50 0.25 0.38 0.38 0.38 0.50 0.50

[4,] 0.44 0.50 0.12 0.00 0.38 0.62 0.43 0.38 0.50 0.50 0.50 0.43 0.43

[5,] 0.38 0.78 0.44 0.38 0.00 0.75 0.75 0.67 0.62 0.62 0.62 0.75 0.75

[6,] 0.62 0.71 0.67 0.62 0.75 0.00 0.67 0.75 0.88 0.71 0.71 0.67 0.67

[7,] 0.78 0.50 0.50 0.43 0.75 0.67 0.00 0.33 0.50 0.50 0.71 0.40 0.40

[8,] 0.56 0.17 0.25 0.38 0.67 0.75 0.33 0.00 0.17 0.17 0.43 0.33 0.33

[9,] 0.67 0.33 0.38 0.50 0.62 0.88 0.50 0.17 0.00 0.33 0.33 0.50 0.50

[10,] 0.50 0.33 0.38 0.50 0.62 0.71 0.50 0.17 0.33 0.00 0.57 0.50 0.50

[11,] 0.50 0.33 0.38 0.50 0.62 0.71 0.71 0.43 0.33 0.57 0.00 0.50 0.50

[12,] 0.62 0.20 0.50 0.43 0.75 0.67 0.40 0.33 0.50 0.50 0.50 0.00 0.00

[13,] 0.62 0.20 0.50 0.43 0.75 0.67 0.40 0.33 0.50 0.50 0.50 0.00 0.00

> h = hclust(d, method="compact"); h

and here is a resulting dendrogram (obtained using the method “Compact”).
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Figure 1: Example of a dendrogram

Chapter 5: Tree-based methods, ie decision trees/ classification
trees
(Regression trees are also a possibility, but we do not discuss them here.)
Example: the autolander data. (data taken from D.Michie, 1989, and dis-
cussed in Venables and Ripley).
For the shuttle autolander data, we seek to base our decision about the
desired level of a particular factor, here “use”, which has possible values
“auto” and “noauto”, on the levels of certain other “explanatory” variables,
here “stability”, “error”, “wind”, “visibility”, . . .. (As it happens, all the
variables in this problem are factors, with two or more levels, but this need
not be the case for this method to work.)
We show how to construct a decision tree, or classification tree, using the
SPlus library

rpart()

or the previously favoured method

tree()

post.tree(shuttle.tree, file="pretty")

Here’s how it works. The decision tree provides a probability model: at each
node of the classification tree, we have a probability distribution (pik) over
the classes k, here k has values just 1, 2, corresponding to “auto”, “noauto”
respectively. (Note that S-Plus works alphabetically, by default) and

Σkpik = 1,

for each node i.
The partition is given by the leaves of the tree, which are also known as
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the terminal nodes, denoted as * in the S-Plus output. (Confusingly, the
convention is that the tree grows upside-down, ie with its root at the top of
the page.)
In the current example, each of the total of n = 256 cases in the training
set is assigned to a leaf, and so at each leaf we have a sample, say (nik), from
a multinomial distribution, say Mn(ni, (pik)) (in the shuttle example these
are actually binomial distributions.)
Condition on the observed variables (xi) in the training set (ie the observed
‘covariate’ values).
Then we know the numbers (ni) of cases assigned to each node of the tree,
and in particular to each of the leaves. The conditional likelihood is thus

∝ Πcases j p[j]yj

where [j] is the leaf assigned to case j. Hence this conditional likelihood is

∝ Πleaves i Πclasses k pnik

ik

and we can define a deviance for the tree as

D = Σleaves iDi,

where
Di = −2Σknik log pik.

Note that a perfect classification would result in each (pi1, pi2) as a (1, 0) or
(0, 1) (zero-entropy) distribution, and in this case each Di = 0 (recall that
0 log 0 = 0) and so D = 0.
Our general aim is to construct a tree with D as small as possible, but without
too many leaves.
How does the algorithm decide how to “split” a given node?
Consider splitting node s into nodes t, u say.

t s u

This will change the probability distribution/model within node s. The total
reduction in deviance for the tree will be

Ds − Dt − Du = 2Σ(ntk log(ptk/psk) + nuk log(puk/psk)).

We do not actually know the probabilities (ptk) etc, so the best we can
do is to estimate them from the sample proportions in the split node, thus
obtaining

p̂tk = ntk/nt, p̂uk = nuk/nu,

and
p̂sk = (ntp̂tk + nup̂uk)/ns = nsk/ns,

and correspondingly, the estimated reduction in deviance is

D̂s − D̂t − D̂u = 2Σ(ntk log(p̂tk/p̂sk) + nuk log(p̂uk/p̂sk).
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This gives us a measure of the value of a split at node s.
NB: since this depends on ns, nt, nu, there will be more value in splitting
leaves with a larger number of cases.
The algorithm for the tree construction is designed to take the MAXIMUM
reduction in deviance over all allowed splits of all leaves, to choose the next
split.
Usually, tree construction continues until
either, the number of cases reaching each leaf is small enough (default, < 10
in tree())
or, a leaf is homogeneous enough (eg, its deviance is < (1/100) of deviance
of root node).
Remarks
1. In classifying new ‘cases’, missing values of some x1, x2, . . . values can
easily be handled (unlike, say, in logistic regression, where we may need to
infer the missing covariate values in order to find a corresponding ‘fitted
value’).
(For example, in the final tree construction, it may turn out that x1, eg wind
speed, is not even used.)
2. ‘Cutting trees down to size’
The function

tree()

may produce some ‘useless’ nodes. The function

prune.tree()

will prune the tree to something more useful, eg by reducing
deviance +α size .
thus, we have a tradeoff between the overall cost and the complexity (ie
number of terminal nodes). (The idea is similar to that of the use of the
AIC in regression models.) This is not explained further here, but is best
understood by experimenting

> library(MASS) ; library(rpart)

>

>shuttle[120:130,]

stability error sign wind magn vis use

120 stab XL nn tail Out no auto

121 stab MM pp head Out no auto

122 stab MM pp tail Out no auto

123 stab MM nn head Out no auto

124 stab MM nn tail Out no auto

125 stab SS pp head Out no auto

126 stab SS pp tail Out no auto

127 stab SS nn head Out no auto

128 stab SS nn tail Out no auto

129 xstab LX pp head Light yes noauto

130 xstab LX pp head Medium yes noauto
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> table(use)

auto noauto

145 111

>fgl.rp = rpart(use ~ ., shuttle, cp = 0.001)

> fgl.rp

n= 256

node), split, n, loss, yval, (yprob)

* denotes terminal node

1) root 256 111 auto (0.5664062 0.4335938)

2) vis=no 128 0 auto (1.0000000 0.0000000) *

3) vis=yes 128 17 noauto (0.1328125 0.8671875)

6) error=SS 32 12 noauto (0.3750000 0.6250000)

12) stability=stab 16 4 auto (0.7500000 0.2500000) *

13) stability=xstab 16 0 noauto (0.0000000 1.0000000) *

7) error=LX,MM,XL 96 5 noauto (0.0520833 0.9479167) *

node), split, n, deviance, yval, (yprob)

* denotes terminal node

> plot(fgl.rp, uniform=T)

> text(fgl.rp, use.n = T)

# see graph attached

# here’s another way,

>shuttle.tree = tree(use ~ ., shuttle); shuttle.tree

check that the ‘root deviance’ is

350.4 = −2[145 log(145/256) + 111 log(111/256)]

1) root 256 350.400 auto ( 0.5664 0.4336 )

2) vis:no 128 0.000 auto ( 1.0000 0.0000 ) *

3) vis:yes 128 100.300 noauto ( 0.1328 0.8672 )

6) stability:stab 64 74.090 noauto ( 0.2656 0.7344 )

12) error:MM,SS 32 44.240 auto ( 0.5312 0.4688 )

24) magn:Out 8 0.000 noauto ( 0.0000 1.0000 ) *

25) magn:Light,Medium,Strong 24 28.970 auto ( 0.7083 0.2917 )

50) error:MM 12 16.300 noauto ( 0.4167 0.5833 )

100) sign:nn 6 0.000 noauto ( 0.0000 1.0000 ) *

101) sign:pp 6 5.407 auto ( 0.8333 0.1667 ) *

51) error:SS 12 0.000 auto ( 1.0000 0.0000 ) *

13) error:LX,XL 32 0.000 noauto ( 0.0000 1.0000 ) *

7) stability:xstab 64 0.000 noauto ( 0.0000 1.0000 ) *

Classification tree:
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|
vis=a

error=c

stability=a

auto  
128/0

auto  
12/4

noauto
0/16

noauto
5/91

Figure 2: Tree for shuttle data drawn by rpart()

tree(formula = use ~ ., data = shuttle)

Variables actually used in tree construction:

[1] "vis" "stability" "error" "magn" "sign"

Number of terminal nodes: 7

Residual mean deviance: 0.02171 = 5.407 / 249

Misclassification error rate: 0.003906 = 1 / 256

tree.rp = rpart(use ~., shuttle)

plot(tree.rp, compress=T) ; text(tree.rp, use.n=T)

and here is the graph drawn by rpart()
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Chapter 6. Classical Multidimensional Scaling

Let D = (δrs) be our dissimilarity/distance matrix, computed from given
data points x1, . . . , xn in Rd, for example by

dist(X,metric="binary")

Take p given, assume p < d.
When does a given D correspond to a configuration y1, . . . , yn in Rp, in terms
of Euclidean distances?
Notation and definitions
Given D, define A = (ars), where ars = −(1/2)δ2

rs, and define B = (brs),
where

brs = ars − ār+ − ā+s + ā++

where ār+ = (1/n)Σsars, etc.
Thus

B = (In − (1/n)11T )A(In − (1/n)11T )

as you can check.
We say that D is Euclidean if there exists a p-dimensional configuration of
points y1, . . . , yn for some p, such that δrs = |yr − ys| for all r, s.
Theorem.
Given the matrix D of interpoint distances, then D is Euclidean iff B is
positive-semidefinite.
(the proof follows Seber, 1984, p236)
Proof
Suppose D corresponds to the configuration of points y1, . . . , yn in Rp and

−2ars = δ2
rs = (yr − ys)

T (yr − ys).

Hence, as you may check,

brs = ars − ār+ − ā+s + ā++ = (yr − ȳ)T (ys − ȳ).

Define the matrix X̃ by

X̃T = (y1 − ȳ : y2 − ȳ : .... : yn − ȳ).

Hence we see that
B = X̃X̃T

and clearly X̃X̃T ≥ 0 (just look at uT X̃X̃T u for any u).
Hence D Euclidean implies B positive semidefinite.
b) Conversely, given D, with A, B defined as above, suppose that B is positive
semidefinite, of rank p. Then B has eigen-values say γ1 ≥ γ2 ≥ . . . γp > 0,
with all remaining eigen-values = 0, and there exists an orthonormal matrix
V , constructed as usual from the eigen-vectors of B such that

V T BV =

(

Γ 0
0 0

)
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where the matrix Γ is diagonal, with diagonal entries γ1, . . . , γp. Thus,

B = V

(

Γ 0
0 0

)

V T .

Now partition V as V = (V1 : V2) so that the columns of V1 are the first p
eigen vectors of B. Then you can see that

B =
(

V1 V2

)

(

Γ 0
0 0

)(

V T
1

V T
2

)

and hence
B = V1ΓV T

1 .

This last equation may be rewritten as

B = (V1Γ
1/2)(V1Γ

1/2)T = Y Y T

say, where we have defined Y as V1Γ
1/2, thus Y is an n × p matrix.

Define yT
1 , . . . , yT

n as the rows of the matrix Y , thus y1, . . . , yn are vectors in
Rp, and you may check that since B = Y Y T , it follows that with B = (brs),

brs = yT
r ys.

hence
|yr − ys|2 = yT

r yr − 2yT
r ys + yT

s ys = brr − 2brs + bss

= arr + ass − 2ars = δ2
rs

since arr = ass = 0. Thus the yi give the required configuration, and so we
see that D is Euclidean.
This concludes the proof. It also indicates to us how we may use, for ex-
ample, the first 2 eigen vectors of B to construct the best 2-dimensional
configuration yi, i = 1, . . . , n corresponding to a given ‘distance’ matrix D,
as in

cmdscale()

Note the classical solution is not unique: a shift of origin and a rotation or
reflection of axes does not change interpoint distances.
Observe (i) Given (δrs), our original distance/dissimilarity matrix, and
(y1, . . . , yn) our derived points (eg forced into R2) with interpoint distances
(drs) say, then

Σr 6=s(drs − δrs)
2/Σr 6=sδ

2
rs = E(d, δ)

is a measure of the ‘stress’ involved in forcing our original n points into a
2-dimensional configuration.
(ii) If (δrs) has actually been derived as an exact Euclidean distance matrix
from the original points x1, . . . , xn, then

cmdscale(D, scale=2)
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Figure 3: Classical Multidimensional Scaling

will give us (exactly) these n points, plotted by their first 2 principal com-
ponent ‘scores’.
Thus if (δrs) is just a Euclidean distance matrix, we do not gain any extra
information by using

cmdscale()

as compared with principal components on the sample covariance matrix.

Finally, Chernoff’s faces for the class of Lent 2003, or how to insult your
students. Chernoff’s faces represents the n × p data matrix (p ≤ 15), by n
faces, of different features, eg size of face, shape of face, length of nose, etc
according to the elements of the p columns. Warning: appearances can be
deceptive: you will get a very different picture by just changing the order of
the columns.

These 2 diagrams were obtained from the data from the class of Lent
2003, which is given below.

MPhil/Part III, app mult. analysis, Feb 2003

...........................................................................

eggs meat coffee beer UKres Cantab Fem sports driver Left-h

Vivienne y n y n y n y y y n

Taeko y y y n y y y n n n

Luitgard y n y n n y y y y n
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Figure 4: Students’ Faces

Alet y y y y n n y n y n

Tom y y y y y y n y y n

LinYee y y y n n n n y y n

Pio y y y n n n n y n n

LingChen y y n n n n y y n n

HuiChin y y y n n n y y y n

Martin y y y y y n n y y n

Nicolas y y y y n n n y y y

Mohammad y y y n n n n n y n

Meg y y y n n n y y n n

Cindy y y y y n n y y y n

Peter y y y y n n n y y n

Paul y y n y y y n y n n

Note, the first column turns out to be unhelpful, so you may prefer to omit
it before trying, eg
dist() for use with hclust() or cmdscale()
The above data set is of course based on rather trivial questions.
By way of complete contrast, here is a data set from The Independent,
Feb 13,2002 on ‘Countries with poor human rights records where firms with
British links do business’. It occurs under the headline
CORPORATE RISK: COUNTRIES WITH A BRITISH CONNECTION.

1 2 3 4 5 6 7 8 9 10 11 12 13 14

SaudiArabia 1 0 0 0 0 1 0 1 0 0 1 1 0 1

Turkey 1 0 1 0 1 1 0 0 0 1 0 1 0 1

Russia 1 0 1 0 1 1 1 0 0 0 0 1 0 1

China 1 1 1 0 1 1 1 0 0 0 0 1 0 1
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Philippines 1 1 1 0 0 0 0 0 1 0 0 1 1 0

Indonesia 1 1 1 0 0 1 1 1 0 0 0 1 0 0

India 1 0 1 0 1 0 0 1 1 0 1 1 0 0

Nigeria 0 0 1 0 0 0 1 0 0 0 0 1 1 0

Brazil 1 0 1 1 1 0 1 0 0 1 0 1 0 0

Colombia 1 1 1 1 1 0 0 0 0 1 0 1 0 0

Mexico 0 1 1 0 0 1 0 0 0 0 0 1 0 1

Key to the questions (1 for yes, 0 for no)

Violation types occurring in the countries listed

1 Torture

2 ‘Disappearance’

3 Extra-judicial killing

4 Hostage taking

5 Harassment of human rights defenders

6 Denial of freedom of assembly & association

7 Forced labour

8 Bonded labour

9 Bonded child labour

10 Forcible relocation

11 Systematic denial of women’s rights

12 Arbitrary arrest and detention

13 Forced child labour

14 Denial of freedom of expression

What happens when you apply

cmdscale()

to obtain a 2-dimensional picture of these 11 countries?
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Applied Multivariate Analysis Exercises
P.M.E.Altham, Statistical Laboratory, University of Cambridge.
See also recent MPhil/Part III examination papers for this course.
The questions below marked with a * are harder, and represent interesting
material that I probably will not have time to explain in lectures.

0. (i) Given the p×p positive-definite symmetric matrix V , with eigen-values
λ1, . . . , λp say, we may write V as

V =
∑

λνuνuν
T ,

equivalently

V = UΛUT

where U is a p × p orthonormal matrix, and Λ is the p × p diagonal matrix
with diagonal elements λν . Hence show

trace(V ) =
∑

λν , det(V ) = Πλν .

0. (ii) Given S, V both p×p positive-definite symmetric matrices, show that
the eigen values of V −1S are real and positive.
0. (iii) Suppose that Y ∼ N(0, V ) and that A is a symmetric matrix, of the
same dimensions as V . Prove that

E(Y T AY ) = tr(AV ).

1.(i) Given a random sample of 2-dimensional vectors x1, · · · , xn from a bi-
variate normal distribution with correlation coefficient ρ (and the other 4
parameters unknown) show, elegantly, that the distribution of the sample
correlation coefficient depends only on ρ, n.
1.(ii) Given a random sample of vectors x1, · · · , xn from N(µ, V ), show, ele-
gantly, that the distribution of

(X̄ − µ)T S−1(X̄ − µ)

is free of µ, V (with the usual notation for X̄, S).
2. The distribution of the sample correlation coefficient rn. You may assume
that for ρ = 0,

rn

√

(n − 2)
√

(1 − r2
n)

∼ tn−2.

This enables us to do an exact test of H0 : ρ = 0.
Further, for large n

rn ∼ N(ρ, v(ρ)/n)

where

v(ρ) = (1 − ρ2)2.
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Show that if we define the transformation g(·) by

2g(ρ) = log (1 + ρ)/(1 − ρ)

then, for large n,
g(rn) ∼ N(g(ρ), 1/n)

hence having variance free of ρ. Hence show how to construct a large sample
confidence-interval for ρ.
Note: g(ρ) = tanh−1(ρ). This is also called Fisher’s z-transformation.
3. Let y1, · · · , yn be a random sample from the p-variate normal distribution
N(µ, V ). Construct the likelihood ratio test of the null hypothesis

H0 : V is a diagonal matrix.
Answer: The l-r criterion is: reject H0 if logdet(R) < constant, where R

is the sample-correlation matrix.
4. Suppose Yν = U + Zν for ν = 1, · · · , p, where

U ∼ N(0, v0) and Z1, · · ·Zp ∼ N(0, v1)

and U, Z1, · · · , Zp are all independent. Show that the covariance matrix of
the vector Y is say, V , where

V = σ2((1 − ρ)I + ρ11T )

for suitably defined σ2, ρ. Write

V −1 = aI + b11T .

Find the eigen values of V −1 in terms of a, b.
5. Given a random sample y1, · · · , yn from N(µ, V ), with V as in question
4, write down the log-likelihood as a function of µ, a and b, and maximise it
with respect to these parameters. Hence write down the mle of ρ.
6. Whittaker, ‘Graphical Methods in Applied Multivariate Statistics’ (1990)
discusses a dataset for five different mathematics exams for 88 students, for
which the sample covariance matrix is

mech 302.29

vect 125.78 170.88

alg 100.43 84.19 111.60

anal 105.07 93.60 110.84 217.88

stat 116.07 97.89 120.49 153.77 294.37

Use Splus to compute the corresponding sample correlation matrix, and dis-
cuss.

By inverting the covariance matrix given above, show that

var(mech| remaining 4 variables) = 0.62 ∗ var(mech),

Can you interpret this in terms of prediction? Show also that

cor(stat, anal|remaining 3 variables) = 0.25.



40

7. Simulate from the bivariate normal to verify Sheppard’s formula

Pr(X1 > 0, X2 > 0) =
1

4
+

1

2π
sin−1(ρ)

where (X1, X2) have the bivariate normal distribution, E(Xi) = 0, var(Xi) =
1 and cor(X1, X2) = ρ.
8. * Canonical correlations
Suppose X, Y are vectors of dimension p, q respectively, and ZT = (XT , Y T )
has mean vector 0, covariance matrix V . We consider the problem:
choose a, b to maximise the correlation between aT X, bT Y , equivalently, to
maximise

ρ = aT V12b/
√

aT V11a bT V22b,

where V has been partitioned in the obvious way. This is equivalent to
maximising aT V12b subject to aT V11a = 1 and bT V22b = 1. By considering
the corresponding Lagrangian, show that a is a solution of the equation

V12V
−1
22 V21a − λµV11a = 0.

We could use this technique to relate one set of variables to another set of
variables. Or, as in classification, we could consider one set of variables as
defining membership or otherwise of each of g groups, and the other set as
our original observations, eg length, height, weight etc. Then our problem is
to see what linear function of the original variables best discriminates into
groups. This is one way of deriving standard discriminant analysis, nowadays
seen as part of the pattern recognition set of techniques.
9. An example of a classification tree (taken from Venables and Ripley, 1999,
p321.)
Fisher’s Iris data-set consists of 50 observations on each of 3 species, here
labelled ”s”, ”c” and ”v”. For each of the 150 flowers, the Petal Length,
Petal Width, Sepal Length and Sepal Width are measured. Can we predict
the Species from these 4 measurements? Experiment with the following:

ird <- data.frame(rbind(iris[, , 1], iris[, , 2], iris[, , 3]), Species = c(

rep("s", 50), rep("c", 50), rep("v", 50)))

is.factor(Species) # procedure only makes sense if Species is a factor

ir.tr _ tree(Species ~ .,ird); summary(ir.tr) ; ir.tr

The resulting tree has 6 terminal nodes, and an error rate of 0.0267.
10.* This question introduces you to the idea of Ridge Regression, fol-
lowing the approach of Hastie, Tibshirani and Friedman ‘The elements of
Statistical Learning’, 2001, p61.
Consider the model

y = Xβ + ε.

We already know very well how to do ordinary least-squares regression for
this problem. But ridge regression ‘shrinks’ the estimates of β by imposing
a penalty on the total size βT β.
For simplicity we also remove the ‘intercept’ from the problem, thus assume
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that yT 1 = 0 and that the matrix X has been centered and scaled, so that,
for each j, the vector (xij) has mean 0 and variance 1.
Now choose β to minimise (y − Xβ)T (y − Xβ) subject to βTβ ≤ s: you
should be able to show that this gives

β̂ridge = (XT X + λI)−1XT y,

where λ corresponds to the Lagrange multiplier. Thus λ(≥ 0) is a complexity
parameter that controls the amount of ‘shrinkage’.
Assume further that the n × p matrix X has singular value decomposition

X = UDV T ,

where U, V are n × p and p × p orthogonal matrices, with the columns of
U spanning the column space of X, and the columns of V spanning its row
space, and D is a p × p diagonal matrix, with diagonal entries d1 ≥ d2 ≥
. . . ≥ dp ≥ 0. Show that, for the ordinary LS estimator,

Ŷ = Xβ̂ls = UUT y,

while for the ridge regression estimator,

Ŷ ridge = Xβ̂ridge = Σ
d2

j

d2
j + λ

uju
T
j y,

where the uj are the columns of U .
Note that, we can use say lm() to obtain the ridge regression estimator for
y = Xβ + ε by doing ordinary least-squares regression with the vector y
replaced by

(

y
0p

)

and the matrix X replaced by
(

X√
λIp

)

.

Choice of the right λ for a given y, X is an art: Hastie et al. use the tech-
nique of cross-validation: see their book, or Venables and Ripley, for a
description of cross-validation.
Interestingly, ‘Penalised Discriminant Methods for the Classificaion of Tu-
mors from Gene Expression Data’ by D.Ghosh, Biometrics 2003, p992, dis-
cusses Ridge regression, and other methods, in the context of gene expression
data, where the ith row of the matrix X corresponds to the ‘gene expression
profile’ for the ith sample, and we have G possible tumours, with gi as the
known tumour class of the ith sample: thus gi takes possible values 1, . . . , G.

11. (new for 2006) Many of the techniques used in Multivariate Analysis can
be seen as examples in constrained optimization, using appropriate matrix al-
gebra. Here is another such, which goes under the name of correspondence
analysis for which the R/S-Plus function
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library(MASS)

corresp()

is written.
Consider the R × C contingency table with known probablities (pij), thus
in matrix notation uT pv = 1, where u, v are unit vectors of dimension R, C
respectively. We wish to choose ‘scores’ (xi), (yj) such that the random vari-
ables X, Y have joint frequncy function given by

P (X = xi, Y = yj) = pij

for all i, j, and (xi), (yj) maximise the covariance between X, Y subject to
the following constraints

E(X) = 0 = E(Y ), var(X) = 1 = var(Y ).

Show that this problem reduces to that of solving the 2 sets of equations

E(Y |X = xi) = λxi, for all i,

E(X|y = yj) = λyj, for all j.

In essence this means we focus on the singular value decomposition of the
R × C matrix (pij/pi+p+j). The largest eigen value of this matrix is always
1 (can you see why?) and the next largest eigen value is λ, our desired
correlation coefficient.
The reason why I had another look at this technique was its use in the article
‘Food buying habits of people who buy wine or beer: cross-sectional study’
by Johansen et al, British Medical Journal, March 4, 2006. The authors
use correspondence analysis to give a 2-dimensional representation (a biplot)
of the data from the 40 × 4 contingency table obtained from the the 40
categories of food types, and the 4 categories of alcohol buyers. For example,
a person who buys both wine (but not beer) and olives contributes to the
(olives, wine but not beer) cell. The resulting graph is constructed from the
approximation

pij = pi+p+j(1 + λ1µi1νj1 + λ2µi2νj2)

and you can see it for yourself at

http://bmj.bmjjournals.com


