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1.1 Introduction

Data are information. Most crucial scientific, sociological, political, economic, and busi-
ness decisions are made based on data analyis. Often data are available in abundance,
but by themselves they are of little help unless they are summarized and an appropriate
interpretation of the summary quantities made. However, such a summary and correspond-
ing interpretation can rarely be made just by looking at the raw data. A careful scientific
scrutiny and analysis of these data can usually provide an enormous amount of valuable
information. Often such an analysis may not be obtained just by computing simple aver-
ages. Admittedly, the more complex the data and their structure, the more involved the data
analysis.

The complexity in a data set may exist for a variety of reasons. For example, the data set
may contain too many observations that stand out and whose presence in the data cannot be
justified by any simple explanation. Such observations are often viewed as influential ob-
servations or outliers. Deciding which observation is or is not an influential one is a difficult
problem. For a brief review of some graphical and formal approaches to this problem, see
Khattree and Naik (1999). A good, detailed discussion of these topics can be found in Bel-
sley, Kuh and Welsch (1980), Belsley (1991), Cook and Weisberg (1982), and Chatterjee
and Hadi (1988).

Another situation in which a simple analysis based on averages alone may not suffice
occurs when the data on some of the variables are correlated or when there is a trend
present in the data. Such a situation often arises when data were collected over time. For
example, when the data are collected on a single patient or a group of patients under a given
treatment, we are rarely interested in knowing the average response over time. What we
are interested in is observing any changes in the values, that is, in observing any patterns
or trends.

Many times, data are collected on a number of units, and on each unit not just one, but
many variables are measured. For example, in a psychological experiment, many tests are
used, and each individual is subjected to all these tests. Since these are measurements on
the same unit (an individual), these measurements (or variables) are correlated and, while
summarizing the data on all these variables, this set of correlations (or some equivalent
quantity) should be an integral part of this summary. Further, when many variables exist, in
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order to obtain more definite and more easily comprehensible information, this correlation
summary (and its structure) should be subjected to further analysis. There are many other
possible ways in which a data set can be quite complex for analysis.

However, it is the last situation that is of interest to us in this book. Specifically, we may
have n individual units and on each unit we have observed (same) p different characteristics
(variables), say x1, x2, . . . , x p. Then these data can be presented as an n by p matrix

X =




x11 x12 . . . x1p

x21 x22 . . . x2p
...

...

xn1 xn2 . . . xnp


 .

Of course, the measurements in the i th row, namely, xi1, . . . , xip, which are the mea-
surements on the same unit, are correlated. If we arrange them in a column vector xi defined
as

xi =



xi1
...

xip


 ,

then xi can be viewed as a multivariate observation. Thus, the n rows of matrix X corre-
spond to n multivariate observations (written as rows within this matrix), and the measure-
ments within each xi are usually correlated. There may or may not be a correlation between
columns x1, . . . , xn . Usually, x1, . . . , xn are assumed to be uncorrelated (or statistically
independent as a stronger assumption) but this may not always be so. For example, if xi ,
i = 1, . . . , n contains measurements on the height and weight of the i th brother in a family
with n brothers, then it is reasonable to assume that some kind of correlation may exist
between the rows of X as well.

For much of what is considered in this book, we will not concern ourselves with the
scenario in which rows of the data matrix X are also correlated. In other words, when rows
of X constitute a sample, such a sample will be assumed to be statistically independent.
However, before we elaborate on this, we should briefly comment on sampling issues.

1.2 Population Versus Sample

As we pointed out, the rows in the n by p data matrix X are viewed as multivariate obser-
vations on n units. If the set of these n units constitutes the entire (finite) set of all possible
units, then we have data available on the entire reference population. An example of such
a situation is the data collected on all cities in the United States that have a population of
1,000,000 or more, and on three variables, namely, cost-of-living, average annual salary,
and the quality of health care facilities. Since each U.S. city that qualifies for the definition
is included, any summary of these data will be the true summary of the population.

However, more often than not, the data are obtained through a survey in which, on each
of the units, all p characteristics are measured. Such a situation represents a multivariate
sample. A sample (adequately or poorly) represents the underlying population from which
it is taken. As the population is now represented through only a few units taken from it,
any summary derived from it merely represents the true population summary in the sense
that we hope that, generally, it will be close to the true summary, although no assurance
about an exact match between the two can be given.

How can we measure and ensure that the summary from a sample is a good representa-
tive of the population summary? To quantify it, some kinds of indexes based on probabilis-
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tic ideas seem appropriate. That requires one to build some kind of probabilistic structure
over these units. This is done by artificially and intentionally introducing the probabilistic
structure into the sampling scheme. Of course, since we want to ensure that the sample is
a good representative of the population, the probabilistic structure should be such that it
treats all the population units in an equally fair way. Thus, we require that the sampling is
done in such a way that each unit of (finite or infinite) population has an equal chance of
being included in the sample. This requirement can be met by a simple random sampling
with or without replacement. It may be pointed out that in the case of a finite population
and sampling without replacement, observations are not independent, although the strength
of dependence diminishes as the sample size increases.

Although a probabilistic structure is introduced over different units through random
sampling, the same cannot be done for the p different measurements, as there is neither a
reference population nor do all p measurements (such as weight, height, etc.) necessarily
represent the same thing. However, there is possibly some inherent dependence between
these measurements, and this dependence is often assumed and modeled as some joint
probability distribution. Thus, we view each row of X as a multivariate observation from
some p-dimensional population that is represented by some p-dimensional multivariate
distribution. Thus, the rows of X often represent a random sample from a p-dimensional
population. In much multivariate analysis work, this population is assumed to be infinite
and quite frequently it is assumed to have a multivariate normal distribution. We will briefly
discuss the multivariate normal distribution and its properties in Section 1.6.

1.3 Elementary Tools for Understanding Multivariate Data

To understand a large data set on several mutually dependent variables, we must somehow
summarize it. For univariate data, when there is only one variable under consideration,
these are usually summarized by the (population or sample) mean, variance, skewness, and
kurtosis. These are the basic quantities used for data description. For multivariate data, their
counterparts are defined in a similar way. However, the description is greatly simplified if
matrix notations are used. Some of the matrix terminology used here is defined later in
Section 1.5.

Let x be the p by 1 random vector corresponding to the multivariate population under
consideration. If we let

x =



x1
...

x p


 ,

then each xi is a random variable, and we assume that x1, . . . , x p are possibly dependent.
With E(·) representing the mathematical expectation (interpreted as the long-run average),
let µi = E(xi ), and let σi i = var(xi ) be the population variance. Further, let the population
covariance between xi and x j be σi j = cov(xi , x j ). Then we define the population mean
vector E(x) as the vector of term by term expectations. That is,

E(x) =



E(x1)
...

E(x p)


 =




µ1
...

µp


 = � (say).

Additionally, the concept of population variance is generalized to the matrix with all the
population variances and covariances placed appropriately within a variance-covariance
matrix. Specifically, if we denote the variance-covariance matrix of x by D(x), then
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D(x) =




var(x1) cov(x1, x2) . . . cov(x1, x p)

cov(x2, x1) var(x2) . . . cov(x2, x p)
...

...

cov(x p, x1) cov(x p, x2) . . . var(x p)




=




σ11 σ12 . . . σ1p

σ21 σ22 . . . σ2p
...

...

σp1 σp2 . . . σpp


 = (σi j ) = � (say).

That is, with the understanding that cov(xi , xi ) = var(xi ) = σi i , the term cov(xi , x j )

appears as the (i, j)th entry in matrix �. Thus, the variance of the i th variable appears
at the i th diagonal place and all covariances are appropriately placed at the nondiagonal
places. Since cov(xi , x j ) = cov(x j , xi ), we have σi j = σ j i for all i, j . Thus, the matrix
D(x) = � is symmetric. The other alternative notations for D(x) are cov(x) and var(x),
and it is often also referred to as the dispersion matrix, the variance-covariance matrix, or
simply the covariance matrix. We will use the three terms interchangeably.

The quantity tr(�) (read as trace of �)= ∑p
i=1 σi i is called the total variance and

|�| (the determinant of �) is referred to as the generalized variance. The two are often
taken as the overall measures of variability of the random vector x. However, sometimes
their use can be misleading. Specifically, the total variance tr(�) completely ignores the
nondiagonal terms of � that represent the covariances. At the same time, two very different
matrices may yield the same value of the generalized variance.

As there exists dependence between x1, . . . , x p, it is also meaningful to at least measure
the degree of linear dependence. It is often measured using the correlations. Specifically,
let

ρi j = cov(xi , x j )√
var(xi ) var(x j )

= σi j√
σi i σ j j

be the Pearson’s population correlation coefficient between xi and x j . Then we define the
population correlation matrix as

� = (ρi j ) =




ρ11 ρ12 . . . ρ1p

ρ21 ρ22 . . . ρ2p

ρp1 ρp2 . . . ρpp


 =




1 ρ12 . . . ρ1p

ρ21 1 . . . ρpp

ρp1 ρp2 . . . 1


 .

As was the case for �, � is also symmetric. Further, � can be expressed in terms of �
as

� = [diag(�)]− 1
2 � [diag(�)]− 1

2 ,

where diag(�) is the diagonal matrix obtained by retaining the diagonal elements of � and
by replacing all the nondiagonal elements by zero. Further, the square root of matrix A
denoted by A

1
2 is a matrix satisfying A = A

1
2 A

1
2 . It is defined in Section 1.5. Also, A− 1

2

represents the inverse of matrix A
1
2 .

It may be mentioned that the variance-covariance and the correlation matrices are al-
ways nonnegative definite (See Section 1.5 for a discussion). For most of the discussion in
this book, these matrices, however, will be assumed to be positive definite. In view of this
assumption, these matrices will also admit their respective inverses.

How do we generalize (and measure) the skewness and kurtosis for a multivariate pop-
ulation? Mardia (1970) defines these measures as

multivariate skewness: β1,p = E
[
(x − �)′�−1(y − �)

]3
,
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where x and y are independent but have the same distribution and

multivariate kurtosis: β2,p = E
[
(x − �)′�−1(x − �)

]2
.

For the univariate case, that is when p = 1, β1,p reduces to the square of the coefficient of
skewness, and β2,p reduces to the coefficient of kurtosis.

The quantities �, �, �, β1,p and β2,p provide a basic summary of a multivariate popu-
lation. What about the sample counterparts of these quantities? When we have a p-variate
random sample x1, . . . , xn of size n, then with the n by p data matrix X defined as

Xn×p =



x′
1
...

x′
n


 ,

we define,

sample mean vector: x = n−1
n∑

i=1

xi = n−1X′1n,

sample variance-covariance matrix: S = (n − 1)−1
n∑

i=1

(xi − x)(xi − x)′

= (n − 1)−1

{
n∑

i=1

xi x′
i − n x x′

}

= (n − 1)−1
{

X′(I − n−11n1′
n)X

}

= (n − 1)−1
{

X′X − n−1X′1n1′
nX

}
= (n − 1)−1 {

X′X − nx x′} .

It may be mentioned that often, instead of the dividing factor of (n − 1) in the above
expressions, a dividing factor of n is used. Such a sample variance-covariance matrix is
denoted by Sn . We also have

sample correlation matrix: �̂ = [
diag(S)

]− 1
2 S

[
diag(S)

]− 1
2

= [
diag(Sn)

]− 1
2 Sn

[
diag(Sn)

]− 1
2 ,

sample multivariate skewness: β̂1,p = n−2
n∑

i=1

n∑
j=1

g3
i j ,

and

sample multivariate kurtosis: β̂2,p = n−1
n∑

i=1

g2
i i .

In the above expressions, 1n denotes an n by 1 vector with all entries 1, In is an n by
n identity matrix, and gi j , i, j = 1, . . . p, are defined by gi j = (xi − x)′S−1

n (x j − x).
See Khattree and Naik (1999) for details and computational schemes to compute these
quantities. In fact, multivariate skewness and multivariate kurtosis are computed later in
Chapter 5, Section 5.2 to test the multivariate normality assumption on data. Correlation
matrices also play a central role in principal components analysis (Chapter 2, Section 2.2).
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1.4 Data Reduction, Description, and Estimation

In the previous section, we presented some of the basic population summary quantities
and their sample counterparts commonly referred to as descriptive statistics. The basic
idea was to summarize the population or sample data through smaller sized matrices or
simply numbers. All the quantities (except correlation) defined there were straightforward
generalizations of their univariate counterparts. However, the multivariate data do have
some of their own unique features and needs, which do not exist in the univariate situation.
Even though the idea is still the same, namely that of summarizing or describing the data,
such situations call for certain unique ways of handling these, and these unique techniques
form the main theme of this book. These can best be described by a few examples.

a. Based on a number of measurements such as average housing prices, cost of living,
health care facilities, crime rate, etc., we would like to describe which cities in the
country are most livable and also try to observe any unique similarities or differences
among cities. There are several variables to be measured, and it is unlikely that attempts
to order cities with respect to any one variable will result in the same ordering if another
variable were used. For example, a city with a low crime rate (a desirable feature) may
have a high cost of living (an undesirable feature), and thus these variables often tend
to offset each other. How do we decide which cities are the best to live in? The problem
here is that of data reduction. However, this problem can neither be described as that of
variable selection (there is no dependent variable and no model) nor can it be viewed as
a prediction problem. It is more a problem of attempting to detect and understand the
unique features that the data set may contain and then to interpret them. This requires
some meaningful approach for data description. The possible analyses for such a data
set are principal component analysis (Chapter 2) and cluster analysis (Chapter 6).

b. As another example, suppose we have a set of independent variables which in turn have
effects on a large number of dependent variables. Such a situation is quite common in
the chemical industry and in economic data, where the two sets can be clearly defined
as those containing input and output variables. We are not interested in individual vari-
ables, but we want to come up with a few new variables in each group. These may
themselves be functions of all variables in the respective groups, so that each new vari-
able from one group can be paired with another new variable in the other group in some
meaningful sense, with the hope that these newly defined variables can be appropriately
interpreted in the context. We must emphasize that analysis is not being done with any
specific purpose of proving or disproving some claims. It is only an attempt to under-
stand the data. As the information is presented in terms of new variables, which are
fewer in number, it is easier to observe any striking features or associations in this latter
situation. Such problems can be handled using the techniques of canonical correlation
(Chapter 3) and in case of qualitative data, using correspondence analysis (Chapter 7).

c. An automobile company wants to know what determines the customer’s preference for
various cars. A sample of 100 randomly selected individuals were asked to give a score
between 1 (low) and 10 (high) on six variables, namely, price, reliability, status symbol
related to car, gas mileage, safety in an accident, and average miles driven per week.
What kind of analysis can be made for these data? With the assumptions that there are
some underlying hypothetical and unobservable variables on which the scores of these
six observable variables depend, a natural inquiry would be to identify these hypothet-
ical variables. Intuitively, safety consciousness and economic status of the individual
may be two (perhaps of several others) traits that may influence the scores on some of
these six observable variables. Thus, some or all of the observed variables can be writ-
ten as a function of, say, these two unobservable traits. A question in reverse is this: can
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we quantify the unobservable traits as functions of the observable ones? Such a query
can be usually answered by factor analysis techniques (Chapter 4). Note, however, that
the analysis provides only the functions and, their interpretations as some meaningful
unobservable trait, is left to the analyst. Nonetheless, it is again a problem of data re-
duction and description in that many measurements are reduced to only a few traits with
the objective of providing an appropriate description of the data.

As is clear from these examples, many multivariate problems involve data reduction, de-
scription and, in the process of doing so, estimation. These issues form the focus of the next
six chapters. As a general theme, most of the situations either require some matrix decom-
position and transformations or use a distance-based approach. Distributional assumptions
such as multivariate normality are also helpful (usually but not always, in assessing the
quality of estimation) but not crucial. With that in mind in the next section we provide
a brief review of some important concepts from matrix theory. A review of multivariate
normality is presented in Section 1.6.

1.5 Concepts from Matrix Algebra

This section is meant only as a brief review of concepts from matrix algebra. An excellent
account of results on matrices with a statistical viewpoint can be found in the recent books
by Schott (1996), Harville (1997) and Rao and Rao (1998). We will assume that the reader
is already familiar with the addition, multiplication, and transposition of matrices. Also the
working knowledge of other elementary concepts such as linear independence of vectors
is assumed.

In SAS, matrix computations can be performed using the IML procedure. The first
statement is

proc iml;

Matrix additions, subtractions, and multiplications are performed using the +, −, and ∗
notations. Thus, if the sum of matrices A1, A2 is to be multiplied by the difference of A3
and A4, then the final matrix, say B, will be computed using the program

proc iml;
b = (a1 + a2) ∗ (a3 − a4);

1.5.1 Transpose of a Matrix

For an m by n matrix A, the transpose of A is obtained by interchanging its rows and
columns. It is denoted by A′. Naturally, A′ is of order n by m. For example, if

A =
[

1 3 4
7 0 1

]

then

A′ =

 1 7

3 0
4 1


 .

Also for two matrices A and B of order m by n and n by r we have, (AB)′ = B′A′.
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In PROC IML, the leading quote (‘) is used for transposition. Since some keyboards may
not support this key, an alternative way to obtain A′ is to use the function T . Specifically,
B = A′ is obtained as either

b = a‘;

or as

b = t(a);

1.5.2 Symmetric Matrices

An n by n matrix A is said to be symmetric if A′ = A. For example,

A =

 7 8 −3

8 0 1
−3 1 9




is symmetric. Clearly, if ai j is the (i, j)th element in matrix A, then for a symmetric matrix
ai j = a ji for all i, j .

1.5.3 Diagonal Matrices

An n by n matrix A is diagonal if all its nondiagonal entries are zeros. A diagonal matrix

is trivially symmetric. For example, A =
[ 3 0 0

0 −1 0
0 0 0

]
is a diagonal matrix.

We will often use the notation diag(A), which stands for a matrix that retains only the
diagonal entries of A and replaces all nondiagonal entries with zeros. Thus, for

A =

 3 4 5

1 8 2
4 −1 0


 ,

the diag(A) will be

diag(A) =

 3 0 0

0 8 0
0 0 0


 .

In PROC IML, the function DIAG(B) requires B to be a vector or a square matrix. Thus, if
A is an n by n matrix, and we want the n by n matrix D = diag(A), then the appropriate
SAS statement is

d = diag(a);

1.5.4 Some Special Matrices

Here are some examples:

• An n by n diagonal matrix with all diagonal entries equal to 1 is called an identity matrix.
It is denoted by In or simply by I if there is no confusion.

• An n by 1 column vector with all entries equal to 1 is denoted by 1n or simply by 1.
• An m by n matrix with all elements as zero is called a zero matrix. It is denoted by 0m,n

or simply by 0.

In PROC IML, the respective functions are I (n), J (n, 1, 1), and J (m, n, 0).
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1.5.5 Triangular Matrices

An n by n matrix A is said to be upper triangular if all entries below the main diagonal
are zero. The lower triangular matrix is similarly defined as one that has all entries above
main diagonal zero. For example,

A1 =

 1 1 9

0 3 4
0 0 4


 and A2 =


 1 0 0

0 3 0
0 3 9




are respectively upper and lower triangular.

1.5.6 Linear Independence

A set of nonzero column (or row) vectors is said to be linearly independent if none of them
can be expressed as a linear combination of some or all of the remaining vectors. If this
does not happen, then this set will be called linearly dependent. A set containing a zero
vector will always be viewed as linearly dependent.

Given a linearly dependent set of vectors, if we discard the zero vector and we con-
tinue to discard one by one the vectors that can be expressed as a linear combination of the
remaining undiscarded vectors, then we will either end with a subset that is linearly inde-
pendent or with an empty set. The number of vectors that finally remain is an important
concept and is formally defined for a matrix (when viewed as a set of columns or rows) in
the next subsection.

1.5.7 Rank of a Matrix

The rank of a matrix A, denoted by R(A), is defined as the number of linearly inde-
pendent rows (or columns) in the matrix. Since we can either work with only rows or
with only columns, it is obvious that R(A) = R(A′). It can also be established that
R(AB) ≤ min(R(A), (R(B)). Further, R(A′A) = R(A).

1.5.8 Nonsingular and Singular Matrices

An n by n matrix A is said to be nonsingular if all its rows (or columns) are linearly
independent. In other words, A is nonsingular if R(A) = n. If one or more rows (or
columns) of A can be written as linear combinations of some or all of the remaining rows
(or columns) of A, then there exists some linear dependence among the rows (or columns)
of A. Consequently, A is said to be singular in this case. For example,

A =
[

1 3
9 4

]

is nonsingular, as neither of the two rows can be linearly expressed in terms of the other.
However,

B =

 1 3 4

9 4 3
11 10 11




is singular since Row 3 = 2× Row 1 + Row 2, which indicates that the third row (or any
other row, for that matter) can be expressed as the linear combination of the other two.
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1.5.9 Inverse of a Square Matrix

An n by n matrix A admits an inverse if there exists a matrix B such that AB = BA = In .
The matrix B is called the inverse of A and is denoted by A−1. For example, for

A =
[

1 3
9 4

]
,

the A−1 is given by

A−1 =




− 4

23

3

23
9

23
− 1

23


 =

[ −0.1739 0.1304
0.3913 −0.0435

]
.

It is obvious that the inverse of A−1, namely, (A−1)−1 is A. The inverse is defined only
for n by n matrices, that is, when the number of rows and the number of columns are equal.
Even for such matrices, it exists if and only if A is nonsingular. Thus, no inverse exists for
matrices that are singular or for which the number of rows is not equal to the number of
columns. For such matrices, a weaker concept, known as a generalized inverse or simply a
g-inverse can be defined. Whenever an inverse of a given matrix exists, it is unique.

In PROC IML, the inverse for a square matrix A can be computed by the statement

a inv = inv (a);

Thus, A INV is the desired inverse. It is unique.
If two matrices A and B are both of order n by n and are nonsingular, then (AB)−1 and

(BA)−1 both exist. However, they are not equal. Specifically,

(AB)−1 = B−1A−1

and

(BA)−1 = A−1B−1.

Since the product of matrices is not commutative, the right-hand sides of the above two
expressions are not equal. This makes it clear why (AB)−1 and (BA)−1 are not the same.

1.5.10 Generalized Inverses

For an m by n matrix, B, a generalized inverse or simply a g-inverse, say G, is an n by m
matrix such that

BGB = B.

In general, the g-inverse always exists. However, it is not necessarily unique. The
g-inverse is unique only for nonsingular matrices and in that case, it is the same as the
inverse. A g-inverse of B is denoted by B−.

The matrix

B =

 1 3 4

9 4 3
11 10 11



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was earlier found to be singular. A g-inverse of B is given by,

B− =




− 4

23

3

23
0

9

23
− 1

23
0

0 0 0


 .

Of course, the above choice of B− is not unique. In PROC IML, a g-inverse for matrix B
can be computed by the statement

b ginv = ginv(b);

Thus, B GINV is a g-inverse. The specific generalized inverse that SAS computes using
the GINV function is the Moore-Penrose g-inverse (which, in fact, has been made unique
by additional restrictions (Rao, 1973)).

1.5.11 A System of Linear Equations

Consider a system of n consistent equations in m unknowns, x1, . . . , xm , (that is, a system
in which no subset of equations violates any of the remaining equations)

a11x1 + a12x2 + · · · + a1m xm = b1

...

an1x1 + an2x2 + · · · + anm xm = bn.

With A =
[ a11 ... a1m

...
an1 ... anm

]
, b =

[
b1

...
bn

]
and x =

[ x1

...
xm

]
, the above system can be written as,

Ax = b.

If m = n and if the matrix A is nonsingular, then the solution x is given by x = A−1b.
If m = n and if A is singular (in which case some equations may be redundant as they are
implied by other equations) or if m �= n, then a solution x is obtained as x = A−b, where
A− is a g-inverse of A. Since the g-inverses are not unique, unless A is nonsingular, in this
case there is no unique solution to the above system of linear equations. The reason for
this is that changing the choice of g-inverse of A in the equation above yields another new
solution.

In PROC IML, the solution x can be obtained by using the SOLVE function. Specifi-
cally, when A is nonsingular, we use

x=solve(a,b);

Alternatively, one can just use the INV function and get the solution by

x=inv(a)*b;

When A is singular, there are infinitely many solutions, all of which can be collectively
expressed as x = A−b+ (I−A−A)z, where z is any arbitrary vector and A− is a g-inverse
of A. Of special interest is the case in which we have a system of consistent linear equations
Ax = 0 when n < m. In this case, although there are infinitely many solutions, a finite
orthonormal (to be defined later) set of solutions can be obtained as a matrix X by using

x=homogen(a);

The columns of matrix X are the orthonormal solutions. The order of X is determined by
the rank of the matrix A.
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1.5.12 Euclidean Norm of a Vector

For an n by 1 vector a, the norm (or length) of a is defined as
√

a′a. Clearly, b defined as
b = a/

√
a′a has norm 1. In this case, b is called the normalized version of a.

1.5.13 Euclidean Distance between Two Vectors

Visualizing the n by 1 vectors a and b as points in an n-dimensional space, we can define
the distance between a and b as the norm of the vector (a−b). That is, the distance d(a, b)

is defined as

d(a, b) = √
(a − b)′(a − b)

=
√√√√ n∑

i=1

(ai − bi )2,

where ai and bi , respectively, are the i th entries of vectors a and b.
The Euclidean distance is the distance between the points as our eyes see it. However,

sometimes distance can be defined after assigning some weights through a positive definite
matrix (to be defined later). Specifically, the weighted distance with weight matrix A is
defined as

dA(a, b) = √
(a − b)′A(a − b),

where A is positive definite. Clearly dIn (a, b) = d(a, b). One common weighted distance
that we encounter in multivariate analysis is the Mahalanobis distance (Rao, 1973).

In general, a distance function, say, δ(a, b) can be defined in many other ways. However,
a distance function must satisfy the following conditions:

• δ(a, b) = 0 if and only if a = b.
• δ(a, b) = δ(b, a).
• δ(a, b) ≥ 0.
• δ(a, c) ≤ δ(a, b) + δ(b, c).

Clearly, d(a, b) and dA(a, b) satisfy all of the above conditions. It may be remarked that
often in statistics, the squared distances are also referred to as distances. This is especially
more frequent in case of certain cluster analyses. In this context, we may remark that the
distance functions are often used as the measures of dissimilarity between the objects or
units. However, various other dissimilarity indexes are also often applied. Many of these
are not distance functions in that they do not satisfy all of the above conditions.

1.5.14 Orthogonal Vectors and Matrices

Two n by 1 vectors a and b are said to be orthogonal to each other if a′b = 0. Additionally,
if a and b are normalized (i.e., a′a = 1 = b′b), then they are called orthonormal. For
example,

a =

 1

1
1


 and b =


 −1

0
1




are orthogonal to each other. Their normalized versions, a/
√

3 and b/
√

2 are orthonormal
to each other.
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An n by n matrix A is said to be an orthogonal matrix if

A′A = AA′ = In .

This necessarily is equivalent to saying that all rows (or columns) of A are orthonormal to
one another. Since for an orthogonal matrix, A′A = AA′ = In , A′ also acts as the inverse
of A. Hence, A is nonsingular as well. Trivially, A′ is also orthogonal.

Let m < n and let A be of order n by m, such that all m columns of A are orthonormal
to each other. In that case,

A′A = Im,

but no such claim can be made for AA′. In this case the matrix A is referred to as a sub-
orthogonal matrix.

The matrix

A =




1√
3

1√
2

−1√
6

1√
3

−1√
2

−1√
6

1√
3

0
2√
6




is orthogonal. However,

A1 =




1√
2

−1√
6−1√

2

−1√
6

0
2√
6




is suborthogonal because only A′
1A1 = I2, but A1A′

1 is not equal to I3.
There are many orthogonal matrices, and using PROC IML a variety of suborthogonal

matrices can be generated. The premultiplication of a general matrix by an orthogonal
matrix amounts to the rotation of the axes. This frequently arises in multivariate contexts
such as principal components analysis and factor analysis.

1.5.15 Eigenvalues and Eigenvectors

Let A be an n by n matrix. The pairs (λ1, x1), . . . , (λn, xn) are said to be pairs of the
eigenvalues and corresponding eigenvectors if all (λi , xi ) satisfy the matrix equation

Ax = λx.

If xi satisfies the above, then a constant multiple of xi also satisfies the above. Thus, often
we work with the eigenvector xi that has norm 1. In general, λi as well as elements of xi

may be complex valued. However, if A is symmetric, all eigenvalues are necessarily real
valued and one can find eigenvectors that are all real valued. If any eigenvalue is zero, then
it implies, and is implied by, the fact that the matrix A is singular.

If A is nonsingular, then A−1 exists. The eigenvalues of A−1 are 1
λ1

, . . . , 1
λn

, and the
corresponding eigenvectors are the same as those of A.

The eigenvalues may be repeated. If an eigenvalue is repeated r times, then we say that
it has multiplicity r . If A is symmetric, then the eigenvectors corresponding to distinct
eigenvalues are all orthonormal (provided they all have norm 1). Further, eigenvectors
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corresponding to an eigenvalue with multiplicity r are not necessarily orthonormal, but
one can always find a set of r distinct eigenvectors, corresponding to this eigenvalue, which
are orthonormal to each other. Putting all these facts together suggests that we can always
find a set of n orthonormal eigenvectors for a symmetric matrix. Thus, in terms of these
orthonormal eigenvectors, namely, x1, . . . , xn, we have n equations

Ax1 = λ1x1

...

Axn = λnxn .

Writing these n equations side by side yields the matrix equation,

(Ax1 : · · · : Axn) = (λ1x1 : · · · : λnxn)

or

A(x1 : · · · : xn) = (x1 : · · · : xn)




λ1
. . .

λn


 .

Let � = diag(λ1, . . . , λn) and P = [x1 : · · · : xn]. Clearly, � is diagonal and P is
orthogonal, since all xi are orthonormal to each other. Thus, we have

AP = P�

or

A = P�P′.

The above fact results in an important decomposition of a symmetric matrix, as stated
below.

1.5.16 Spectral Decomposition of a Symmetric Matrix

Let A be an n by n symmetric matrix. Then A can be written as

A = P�P′,

for some orthogonal matrix P and a diagonal matrix �. Of course, the choices of P and �
have been indicated above.

Using PROC IML, the eigenvalues and eigenvectors of a symmetric matrix A can be
found by using the call

call eigen(lambda, p, a);

The eigenvalues and respective eigenvectors are stored in � and P. Columns of P are the
eigenvectors. Of course, this also readily provides a choice for the spectral decomposition
matrices. However, the spectral decomposition of A is not unique.

1.5.17 Generalized Eigenvalues and Eigenvectors

Let A and B be two n by n symmetric matrices, and let B be positive definite. Then
(δ1, x1), (δ2, x2), . . . , (δn, xn) are the pairs of eigenvalues and eigenvectors of A with re-
spect to B if they all satisfy the generalized eigenequation

Ax = δBx,
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for all i = 1, . . . , n. With Q = (x1 : x2 : · · · : xn), all of the above n equations (with
x = xi and δ = δi ) can be written as one matrix equation,

AQ = BQ�,

where � = diag(δ1, . . . , δn).

The generalized eigenvalue problems occur naturally in many statistical contexts. One
such context is the construction of the canonical discriminant functions discussed in Chap-
ter 5, Section 5.6. Using PROC IML, and given A and B, the matrices Q and � can be
computed by the subroutine call

call geneig(d,q,a,b);

The vector d obtained from the above call contains the eigenvalues of A with respect to B.
Thus, � is computed as � = DIAG(d). The columns of Q are the respective eigenvectors.
These eigenvectors are not necessarily orthogonal. It may be remarked that the generalized
eigenvalue problem is equivalent to finding the eigenvalues and eigenvectors of a possibly
nonsymmetric matrix B−1A. It is known that these will necessarily be real, even though
the particular matrix B−1A is possibly asymmetric.

1.5.18 Determinant of a Matrix

For our purpose, we define the determinant of an n by n matrix A as the product of all
eigenvalues λ1, . . . , λn of A. Thus, the determinant of A, denoted by |A|, is

|A| = λ1 . . . λn .

Thus, |A| = 0 if and only if at least one eigenvalue is zero, which occurs if and only if A
is singular. In the IML procedure, the determinant DETER, of a square matrix A can be
computed by using the statement

deter = det(a);

1.5.19 The Trace of a Matrix

The trace of an n by n matrix A is defined as the sum of all its eigenvalues. Thus, the trace
of A, denoted by tr (A), is

tr (A) = λ1 + · · · + λn .

It turns out (as already mentioned in Section 1.3) that tr(A) is also equal to a11 + · · · +
ann , the sum of all diagonal elements of A. This equivalence is useful in the conceptual
development of the theory for principal components. In PROC IML the trace TR of a
square matrix A, can be computed by using the TRACE function as follows

tr = trace(a);

1.5.20 Majorization

Let a =
[ a1

...
an

]
and b =

[
b1

...
bn

]
be two n by 1 vectors with a1 ≥ a2 ≥ · · · ≥ an and

b1 ≥ b2 ≥ · · · ≥ bn . Then a is said to be majorized by b if
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a1 ≤ b1

a1 + a2 ≤ b1 + b2

...

a1 + · · · + an−1 ≤ b1 + · · · + bn−1

a1 + · · · + an = b1 + · · · + bn .

One important majorization fact about a symmetric matrix is that the vector of all diagonal
elements arranged in increasing order is majorized by the vector of all eigenvalues also
arranged in increasing order. This result is useful in principal component analysis, and it
justifies why the use of a few principal components may be superior to the use of a few
individual variables in certain situations.

For two vectors a and b as defined, we can verify if a is majorized by b when we use
the following SAS/IML code:

if all( cusum(a) <= cusum(b)) then major = ’yes’;
else major = ’no’;
print major;

1.5.21 Quadratic Forms

Let A = (ai j ) be an n by n matrix and x be an n by 1 vector of variables. Then

x′Ax =
n∑

i=1

n∑
j=1

ai j xi x j

= a11x2
1 + · · · + annx2

n

+ (a12 + a21)x1x2 + · · · + (an−1,n + an,n−1)xn−1xn .

It is a second degree polynomial in x1, . . . , xn , and thus it is referred to as a quadratic form
in x.

Clearly, x′Ax = x′A′x which, by averaging, is also the same as x′
(

A+A′
2

)
x. Since A+A′

2

is always symmetric, without any loss of generality, the matrix A in the above definition of
quadratic forms can be taken to be symmetric. In this case, with A symmetric, a quadratic
form can be expanded into any one of the alternative representations:

x′Ax =
n∑

i=1

n∑
j=1

ai j xi x j

=
n∑

i=1

aii x2
i +

n∑
i=1

n∑
j=1

i �= j

ai j xi x j

=
n∑

i=1

aii x2
i + 2

n∑
i=1

n∑
j=1

i< j

ai j xi x j .

The equation x′Ax = c, where c is a constant, represents a quadratic surface in an n-
dimensional space. Thus, it may be a paraboloid, a hyperboloid or an ellipsoid (or a hybrid
of these). Which it is depends on the elements of matrix A. The latter case of ellipsoid is of
special interest in statistics, and it occurs if A is positive (semi-)definite, which is defined
below.
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1.5.22 Positive Definite and Semidefinite Matrices

An n by n symmetric matrix A is said to be positive definite if for any vector x �= 0,
the quadratic form x′Ax > 0. Similarly, it is positive semidefinite (also referred to as
nonnegative definite) if x′Ax ≥ 0. Of course any positive definite matrix is also positive
semidefinite. When A is positive definite the equation x′Ax = c, where c is a constant,
represents an ellipsoid.

It is known that for a positive definite matrix, all eigenvalues are positive. The converse
is also true. Similarly, for a positive semidefinite matrix, these are nonnegative. Since for a
positive definite matrix all eigenvalues are positive, so is the determinant, being the product
of these. Thus, the determinant is not equal to zero, and hence A is necessarily nonsingular.
Thus, a positive definite matrix A always admits an inverse.

If B is an m by n matrix, then BB′ and B′B are positive semidefinite. If m < n and
R(B) = m then BB′ is also positive definite. However B′B is still positive semidefinite
only.

1.5.23 Square Root of a Symmetric Positive Semidefinite
Matrix

For a symmetric positive semidefinite matrix A, one can find an upper triangular matrix U
such that

A = U′U.

This is called the Cholesky decomposition. In PROC IML, the statement

u=root(a);

performs the Cholesky decomposition. The matrix U in the above is upper triangular and
hence not symmetric. A symmetric square root of A denoted by A1/2 can also be ob-
tained. Specifically, since A is symmetric, we must have by its spectral decomposition,
A = P�P′ = (P�1/2P′)(P�1/2P′) = A1/2A1/2, where P is orthogonal and � is diagonal.
The diagonal matrix � contains the eigenvalues of A in the diagonal places, which are non-
negative since the matrix A is nonnegative definite. Thus, we take �1/2 as just a diagonal
matrix with diagonal elements as the positive square roots of the corresponding elements
of �. Accordingly, we define A1/2 as A1/2 = P�1/2P′. Thus, A1/2 is also symmetric.
However, it may not be unique, since the spectral decomposition of A is not unique.

The SAS statements that obtain A1/2 are

proc iml;
a = {
10 3 9,
3 40 8,
9 8 15};
call eigen(lambda,p,a);
lam half = root(diag(lambda));
a half = p*lam half*p‘;
print a, p, lam half;
print a half ;

The symmetric square root matrix A1/2 in the above program is denoted by A H AL F .
It may be pointed out that A−1/2 may be computed by taking the inverse of A1/2 or by
directly computing the symmetric square root of A−1 instead of A using the program.
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1.5.24 Singular Value Decomposition

Any matrix B of order m by n can be presented as B = UQV′, where U and V are orthog-
onal or suborthogonal. If m is larger than n, then U is suborthogonal (only UU′ is equal to
the identity matrix but U′U is not) and V is orthogonal. The matrix Q is a diagonal matrix
of order n by n. If m is smaller than n, then after ignoring the last n −m zero columns of U
this reduced matrix, say U∗, and V are both orthogonal. If B is square, then both U and V
are orthogonal. The diagonal places of matrix Q contain the singular values of B. Denoting
U, Q, and V by LEFT, MID, and RIGHT, the following IML subroutine call results in their
computation

call svd(left,mid,right,b);

Only the diagonal elements of Q—and not the entire matrix—are printed, and hence MID
is a column vector, not a square matrix. Thus, for any further calculations involving Q, it
should be specified as DIAG(MID).

The singular value decomposition (SVD) is also written in a form when the left and right
side matrices of decomposition are orthogonal and not just suborthogonal. In this case the
middle matrix Q is of order m by n. Specifically, when m = n, nothing needs to be done
as U and V are both orthogonal. When m > n, we write B as

B = [
Um×n : Ucm×(m−n)

]
 Qn×n

. . .

0(m−n)×n


 V′

n×n

= U∗Q∗V′∗.

Here V∗ = V, Q =
[

Qn×n
...

0(m−n)×n

]
and U∗ = [U : Uc]. The matrix Uc is suitably chosen

such that U′
cU = 0. It is called the orthogonal complement of U, and one choice of Uc (as

it may not be unique) can be obtained by using the function HOMOGEN. Specifically, in
PROC IML, we use the statement

uc=homogen(t(u));

to obtain the matrix Uc.
When m < n, the m × n matrix U will necessarily have (n − m) zero columns. The

matrix U∗ is obtained by eliminating these columns from U, V∗ is the same as V, and
Q∗ = Q. Thus, we again have B = U∗Q∗V′∗.

It may be pointed out that the SVD of B′ is equivalent to the SVD of B. Thus, alterna-
tively, the case of m < n can be derived from the case of m > n and vice versa.

1.5.25 Generalized Singular Value Decomposition

In the singular value decomposition of matrix B defined above, the matrices U∗ and V∗
were orthogonal. That is, we had

U′∗U∗ = U∗U′∗ = Im

and

V′∗V∗ = V∗V′∗ = In .
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While dropping the subscripts ∗, we may instead require

U′CU = Im

and

V′DV = In,

where C and D are, respectively, m by m and n by n symmetric positive definite matri-
ces. We can still have the decomposition B = UQV′, where U and V satisfy the latter
two requirements instead of the former two. This is known as the generalized singular
value decomposition of matrix B. Such a decomposition is very useful in correspondence
analysis.

The generalized singular value decomposition of B is closely related to the singular

value decomposition of C
1
2 BD

1
2 . In fact, one can be obtained from the other. Thus, to find

the generalized singular value decomposition of B, let us call C
1
2 BD

1
2 = B∗. We can per-

form the singular value decomposition of B∗, using the SVD call as shown in the previous
subsection. By calling the corresponding orthogonal matrices as U∗ and V∗, respectively,
the matrices U and V, satisfying the requirements U′CU = Im and V′DV = In , are ob-
tained as

U = C− 1
2 U∗

and

V = D− 1
2 V∗ .

Of course to compute C
1
2 and D

1
2 , the ROOT function can be used.

1.5.26 Kronecker Product

We define the Kronecker product of C with D (denoted by C ⊗ D) by multiplying every
entry of C by matrix D and then creating a matrix out of these block matrices. In notations,
the Kronecker product is defined as C ⊗ D = (ci j D). In SAS/IML software, the operator
@ does this job. For example, the Kronecker product matrix K RO N C D is obtained by
writing

kron cd = c @ d;

With

C =

 1 0 3 4

0 4 1 −1
1 1 −3 2


 ,

and

D =

 1

3
7


 ,

the Kronecker product C ⊗ D (using SAS syntax C@D) is equal to
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C ⊗ D =




1 0 3 4
3 0 9 12
7 0 21 28
0 4 1 −1
0 12 3 −3
0 28 7 −7
1 1 −3 2
3 3 −9 6
7 7 −21 14




.

The next two subsections cover data manipulation and indicate how to create a matrix
from a data set and how to convert a data set into a matrix.

1.5.27 Creating a Matrix from a SAS Data Set

Often, after running a SAS program, we may, for further calculations, need to use PROC
IML. That may require converting an input or output data set to a matrix. An example
follows.

Suppose we have a data set called MYDATA with three variables X1, X2, and X3 and
five data points. From that we want to create a matrix called MYMATRIX. To do so, we
use the following SAS statements

data mydata;
input x1 x2 x3;
lines;
2 4 8
3 9 1
9 4 8
1 1 1
2 7 8
;
proc iml;
use mydata;
read all into mymatrix;
quit;
print mymatrix;

If we want a matrix consisting of only a few variables, say in this case x3 and x1 (in that
specific order) from the data set, then the appropriate READ statement needs to be slightly
more specific:

read all var {x3 x1} into mymatrix;

1.5.28 Creating a SAS Data Set from a Matrix

Conversely, we can create a SAS data set out of a matrix. An example is presented here.
Suppose we have a 5 by 3 matrix titled MYMATRIX that contains five observations from
three variables for which we will use the default names COL1, COL2, and COL3. From
this, we want to create a data set named NEWDATA. It is done as follows.

proc iml;
mymatrix = {
2 4 8,
3 9 1,
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9 4 8,
1 1 1,
2 7 8};
create newdata from mymatrix;
append from mymatrix;
close newdata;
quit;
proc print data = newdata;

1.6 Multivariate Normal Distribution

A probability distribution that plays a pivotal role in much of the multivariate analysis is
multivariate normal distribution. However, as this book concentrates more on the descrip-
tion of multivariate data, we will encounter it only occasionally. With that in mind, we
give here only a very brief review of multivariate normal distribution. The material here is
adopted from Khattree and Naik (1999). We say that x has a p-dimensional multivariate
normal distribution (with a mean vector � and the variance-covariance matrix �) if its
probability density is given by

f (x) = 1

(2π)p/2|�|1/2
· exp(−1

2
(x − �)′�−1(x − �)).

In notation, we state this fact as x ∼ Np(�, �). Observe that the above density is a straight-
forward extension of the univariate normal density to which it will reduce when p = 1.

Important properties of the multivariate normal distribution include some of the follow-
ing:

• Let Ar×p be a fixed matrix, then Ax ∼ Nr (A�, A�A′)(r ≤ p). It may be added that
Ax will admit the density if A�A′ is nonsingular, which will happen if and only if all
rows of A are linearly independent. Further, in principle, r can also be greater than p.
However, in that case, the matrix A�A′ will not be nonsingular. Consequently, the vector
Ax will not admit a density function.

• Let G be such that �−1 = GG′, then G′x ∼ Np(G′�, I) and G′(x − �) ∼ Np(0, I).
• Any fixed linear combination of x1, . . . , x p, say, c′x, cp×1 �= 0 is also normally dis-

tributed. Specifically, c′x ∼ N1(c′�, c′�c).
• The subvectors x1 and x2 are also normally distributed. Specifically, x1 ∼ Np1(�1, �11)

and x2 ∼ Np−p1(�2, �22), where with appropriate partitioning of � and �,

� =
[

�1
�2

]
,

and

� =
[

�11 �12
�21 �22

]
.

• Individual components x1, . . . , x p are all normally distributed. That is, xi ∼ N1(µi , σi i ),
i = 1, . . . , p.

• The conditional distribution of x1 given x2, written as x1|x2, is also normal. Specifically,

x1|x2 ∼ Np1(�1 + �12�−1
22 (x2 − �2), �11 − �12�−1

22 �21).
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Let �1 + �12�−1
22 (x2 − �2) = �1 − �12�−1

22 �2 + �12�−1
22 x2 = B0 + B1x2, and

�11.2 = �11 − �12�−1
22 �21. The conditional expectation of x1 for given values of x2

or the regression function of x1 on x2 is B0 + B1x2, which is linear in x2. This is a key
fact for multivariate multiple linear regression modeling. The matrix �11.2 is usually
represented by the variance-covariance matrix of error components in these models. An
analogous result (and the interpretation) can be stated for the conditional distribution of
x2 given x1.

• Let � be a fixed p × 1 vector, then

x + � ∼ Np(� + �, �).

• The random components x1, . . . , x p are all independent if and only if � is a diagonal
matrix; that is, when all the covariances (or correlations) are zero.

• Let u1 and u2 be respectively distributed as Np(�u1, �u1) and Np(�u2, �u2), then

u1 ± u2 ∼ Np(�u1 ± �u2, �u1 + �u2 ± (cov(u1, u2) + cov(u2, u1))).

Note that if u1 and u2 were independent, the last two covariance terms would drop out.

There is a vast amount of literature available on the multivariate normal distribution,
its properties, and the evaluations of the multivariate normal probabilities. See Anderson
(1984), Kshirsagar (1972), Rao (1973), and Tong (1990) for further details.

1.6.1 Random Multivariate Normal Vector Generation

Oftentimes, we may want to generate random observations from a multivariate normal
distribution. The following SAS/IML code, illustrated for n = 10 random observations
from N3(�, �), with

� =

 1

2
3


 ,

and

� =

 1 .7 .2

.7 2 −.8

.2 −.8 2.5


 ,

can be appropriately modified for this purpose. It is necessary to specify the appropriate
values of � (MU), � (SIGMA), and the initial seed vector (SEED).

proc iml;
start rnorm(mu,sigma,seed);
z=normal(seed);
g=root(sigma);
x=mu+t(g)*z;
return(x);
finish;
do i=1 to 10;
x=rnorm(1,2,3,
1 .7 .2, .7 2 -.8, .2 -.8 2.5,
12345,87948,298765);
matx=matx//x‘;
end;
print matx;

The output, namely the ten vectors from the above trivariate normal population, are
stored as a 10 by 3 matrix named MATX. Details about the steps of the generation can be
found in Khattree and Naik (1999).
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1.7 Concluding Remarks

This chapter is meant to be an introduction in order to prepare readers for what is cov-
ered within this book. There are many other concepts, topics, and methods that are not
mentioned. However, the sections on matrix results and multivariate normality provide
adequate preparation for appreciating and understanding the data analysis approaches dis-
cussed in this book. Some of the more advanced concepts are occasionally introduced in
other chapters as and when their needs arise. Readers who are interested in the extensive
study of matrix theory-related results as they apply in multivariate analysis should see Rao
and Rao (1998).




