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These worksheets were originally constructed for my graduate teaching before I retired in
September 2005. Since then, I have added some examples and graphs, and also made some minor
editorial changes. For example, this new version of the worksheets includes a small index of the
commands used, and also of the datasets.
If you have any comments or queries, please contact me at

p.m.e.altham@statslab.cam.ac.uk

http://www.statslab.cam.ac.uk/~pat

Special thanks must go to Dr R.J.Gibbens for his help in introducing me to S-Plus, and also to
Professor B.D.Ripley for access to his S-Plus lecture notes. Several generations of keen and critical
students for the Cambridge University Diploma in Mathematical Statistics, and since 1998 for the
MPhil in Statistical Science, have made helpful suggestions which have improved these worksheets.
These worksheets may be used for any educational purpose provided their authorship (P.M.E.Altham)
is acknowledged.
Most of the multivariate theory used is explained in my Lecture Notes at

http://www.statslab.cam.ac.uk/~pat/AppMultNotes.ps

These worksheets form a companion set to “Introduction to S-Plus for Generalized Linear Mod-
elling”, or (more recently) to my R worksheets for a similar course, which are available at

http://www.statslab.cam.ac.uk/~pat/redwsheets.ps

Nearly all of the examples given below will work in R, the free software (see link on my webpage).
Aristotle said

‘For the things we have to learn before we can do them, we learn by doing them.’

This is a quotation I found at the start of the book by B.J.T.Morgan, ‘Applied Stochastic Mod-
elling’, published by Arnold (2000).

Table of contents.

1. Classical Statistics and Introduction to non-parametric methods (tax-revenue data and vehicle
safety data).
New for 2008, Tompkins rankings of Cambridge colleges from 2000 to 2008. Batting averages of
England Cricket Captains.
2. Getting started in multivariate analysis: simulating from a multivariate normal distribution.
Plotting a bivariate normal density function.
3. Graphical models for dependence between variables. New for 2008: the Times data on UK
universities.
4. Multivariate analysis of Variance.
5. The discriminate function.
6. Principal components analysis.
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7. Hierarchical clustering.
8. Decision trees: the autolander data for the space shuttle.
9. Time series analysis.
10. Survival data analysis.
11. The British monarchy data: a question.
12. Classical multidimensional scaling and Chernoff’s faces on student data.
Also, human rights abuses in 11 different countries.
13. A repeated measures design.
14. Fitting the beta-binomial distribution to Marshall and Spiegelhalter’s data on in vitro fertili-
sation (52 British clinics).
15. Multinomial logistic regression and classification. New for August 2008: distribution of British
Olympic medals for the last 10 Olympic games.
16. New for July 2003: Mohammad Raza’s multivariate data on 50 famous films.
17. Eight men behaving badly (2004), and Hawks and Doves at the Monetary Policy Committee
(2007).
18. New for December 2005: capture-recapture data. How many snowshoe hares are there in a
given closed population? How many individuals with alcohol-related problems are there in a given
closed population in a region of Northern Italy?
...........................................................................
References.
Venables, W.N. and Ripley, B.D. (2002) Modern Applied Statistics with S-Plus. New York:
Springer-Verlag. Also, any of the 3 previous editions this book.
Webb, A. (1999) Statistical Pattern Recognition. London: Arnold (this shows the relevance of
multivariate analysis to the topic of Statistical Pattern Recognition.)
Note added April 2008 A very interesting article by Michael Friendly, which has a good online
dataset and some marvellous graphics, is
‘A.-M.Guerry’s Moral Statistics of France: Challenges for Multivariable Spatial Analysis’, in Sta-

tistical Science, 22, 368-399.
This is based on a nineteenth-century dataset.

Those of you with interests in financial mathematics, eg for your projects, should try

Splus6

module(finmetrics)

for example for fitting GARCH models, or copula models.
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1. Classical statistical tests: t-tests and non-parametric.

The 2-sample t-test and the 2-sample Wilcoxon test

Notation: let (x1, x2, . . . , xm) and (y1, y2, . . . , yn) be independent random samples from the distri-
bution functions F (.), G(.) respctively.
If we know that F,G correspond respectively to N(µ1, σ

2) and N(µ2, σ
2) then the optimum test

of
H0 : µ1 = µ2 against the alternative H1 : µ1 < µ2 is achieved by the ‘2-sample t-test’, and here is
an example, for a very small and obvious set of data.

>x <- scan()

3.7 2.1 4.5 7.1

>y<- scan()

6.1 7.9 10.3 11.4 13.7

>summary(x)

Min. 1st Qu. Median Mean 3rd Qu. Max.

2.1 3.3 4.1 4.35 5.15 7.1

>summary(y)

Min. 1st Qu. Median Mean 3rd Qu. Max.

6.1 7.9 10.3 9.88 11.4 13.7

>t.test(x,y, alt ="less")

Standard Two-Sample t-Test

data: x and y

t = -3.1364, df = 7, p-value = 0.0082

alternative hypothesis: true difference in means is less than 0

95 percent confidence interval:

NA -2.189557

sample estimates:

mean of x mean of y

4.35 9.88

Thus here we reject H0 in favour of H1. Observe that here, µ1 < µ2 implies that F (x) > G(x) for
all x, ie the x’s tend to be smaller than the y’s.
But what if we want to test HP0 : F (x) = G(x) for all x against the alternativeHP1 : F (x) > G(x)
for all x, without making a specific assumption about the shape of F,G?
It turns out that we can get a long way (and in fact produce tests that are really rather efficient)
simply by considering the ranks of the observations xi, yj .
This is what ‘nonparametric’ (or more accurately, ‘distribution-free’) statistical tests achieve, and
as such they have a long history.
First, we find the ranks of (x), (y) in the combined sample, which has 4 + 5 = 9 elements.

> rank(c(x,y))

[1] 2 1 3 5 4 6 7 8 9

Then we find W , the sum of the ranks of (x1, . . . , xm) in the combined sample; here W = 2 + 1 +
3 + 5 = 11. We reject HP0 in favour of HP1 if W is sufficiently SMALL, say if W ≤ c, where
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P (W ≤ c|HP0) = .05, say.
The beauty of non-parametric statistics is that we can compute the ‘null distribution’ of W purely
from m,n, the respective sample sizes.

>wilcox.test(x,y, alt ="less")

Exact Wilcoxon rank-sum test

data: x and y

rank-sum statistic W = 11, n = 4, m = 5, p-value = 0.0159

alternative hypothesis: true mu is less than 0

How is the p-value computed? Note that under the null hypothesis, we can say by symmetry that
all the orders of the x1, . . . , xm, y1, . . . , yn are equally likely, and each such order must therefore
have probability

1/

(

m+ n

m

)

= q say.

Here’s how we build up the null distribution of W .
You can check that by definition, q = .007936. Further, by definition, W ≥ 10, and W = 10(=
1 + 2 + 3 + 4) with probability q.
And W = 11 = (1 + 2 + 3 + 5) with probability q also, hence

P (W ≤ 11|HP0) = 2 × q = .0159.

Note that in general (for reasonable sorts of distributions, in fact) the non-parametric test is con-

servative with respect to the corresponding t-test (we are throwing away some data by using only
ranks) so that we should expect that the non-parametric test will have a larger p-value than the
corresponding t-test.

Now we consider a new problem, tests for paired samples. Suppose we have data (x1, y1), . . . , (xn, yn),
a random sample from the bivariate distribution function F (x, y). We wish to test the hypothesis
HP0 : F (x, y) = F (y, x) for all x, y against the alternative hypothesis HPalt that the x’s tend to
be smaller than the corresponding y’s. In the example given below, n = 6, and it is fairly obvious
that the x’s tend to be less than the y’s, but the sample size is rather small. Now we know that
if F (., .) is bivariate normal, then the optimum test of HP0 against HPalt is the paired sample
t-test, carried out as follows:

> cbind(x,y,y-x)

x y

[1,] 12.3 12.43 0.13

[2,] 14.4 14.71 0.31

[3,] 2.3 2.97 0.67

[4,] 5.1 5.98 0.88

[5,] 6.7 6.12 -0.58

[6,] 9.1 9.99 0.89

>summary(y-x)

Min. 1st Qu. Median Mean 3rd Qu. Max.

-0.58 0.175 0.49 0.3833 0.8275 0.89

> t.test(x,y,paired =T,alt = "less")
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Paired t-Test

data: x and y

t = -1.6687, df = 5, p-value = 0.078

alternative hypothesis: true mean of differences is less than 0

95 percent confidence interval:

NA 0.07956285

sample estimates:

mean of x - y

-0.3833333

Hence, the corresponding p-value is 0.078, so that at level 10% we reject HP0 in favour of HPalt.
How can we carry out the corresponding test if we make no assumption about the shape of F (., .)?
Here’s the way we do it.
Put zi = yi − xi, then z1, . . . , zn is a random sample from the distribution function G(.) say.
We test H0 : G(z) = 1 −G(−z), ie G corresponds to a pdf symmetric about 0,
against H1, G corresponds to a pdf symmetric about a point > 0.
So, we compute zi = yi − xi, find the ranks of |zi|, 1 ≤ i ≤ n
and then compute as our test statistic V , defined as the sum of the ranks of the |zi| for which
zi < 0.

> rank(abs(y-x))

[1] 1 2 4 5 3 6

> abs(y-x)

[1] 0.13 0.31 0.67 0.88 0.58 0.89

> wilcox.test(x,y,paired =T,alt ="less")

Exact Wilcoxon signed-rank test

data: x and y

signed-rank statistic V = 3, n = 6, p-value = 0.0781

alternative hypothesis: true mu is less than 0

How is the p-value computed?
Here it is P (V ≤ 3|H0) and so we see that it is P (V = 0, 1, 2 or 3|H0).
Let M = number out of z1, . . . , zn which are < 0. Then it can easily be seen that on H0, M is
distributed as Bi(n, 1/2).
Hence . . . it can be shown that, on H0,

P (V = 0) = 1/26 = P (V = 1) = P (V = 2)

and
P (V = 3) = P (V = 1 + 2 or V = 3) = 1/26 + 1/26

giving P (V ≤ 3|H0) = 5/26 = .0781 as given.
This way we can build up the null distribution of V , our test statistic, without even knowing the
parent distribution G().
For large n the asymptotic null distribution of V is normal, with mean and variance which are
known functions of n, and a corresponding result holds for the 2-sample Wilcoxon test. You will
find that R and SPlus use these asymptotic results to compute the p-values for large sample sizes.
Here is a very quick illustration, on the same very small sample, of bootstrap methods, here
used to find 2 slightly different versions of a 95% confidence interval for the mean.
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>z # this is our sample, of size 6.

[1] 0.13 0.31 0.67 0.88 -0.58 0.89

>t.test(z) # this will give a 95% confidence interval for mu,

# based on the assumption that the z’s form a random sample

# from a Normal distribtion.

One Sample t-test

data: z

t = 1.6687, df = 5, p-value = 0.1560

alternative hypothesis: true mean is not equal to 0

95 percent confidence interval:

-0.2071798 0.9738465

sample estimates:

mean of x

0.3833333

Now we will use the bootstrap library to find our confidence intervals for the mean. This con-
struction does not depend on the assumption of normality. We generate 1000 bootstrap samples,
and compute the mean for each such sample. Each sample is drawn *with* replacement from the
original z1, . . . , z6.

>library(boot)

>set.seed(1.7) # the arbitrary choice 1.7 ensures we get the same result each time

> z.boot = boot(data=z, statistic = function(x,i) mean(x[i]) , R =1000)

> boot.ci(z.boot, type=c("perc", "bca"))

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS

Based on 1000 bootstrap replicates

CALL :

boot.ci(boot.out = z.boot, type = c("perc", "bca"))

Intervals :

Level Percentile BCa

95% (-0.0467, 0.7567 ) (-0.1350, 0.7183 )

Calculations and Intervals on Original Scale

Now a different example for you to try. The datafile
taxrevenue
contains, as rows, the taxrevenue for sales of
tobacco, spirits, beer, wine, cider and sherry, betting.
The columns are 1989-90,1990-91,1991-92.
These data are from “ The Independent” Aug 18, 1993. (Note, data from a newspaper, while
interesting and topical, does not usually constitute a “random sample”. We press on regardless.)
Here is the dataset taxrevenue

x y z

5035.3 5636.0 6289.5

1513.5 1703.0 1742.1

2074.2 2290.0 2324.9

791.2 855.3 924.5

58.8 68.6 73.8

976.1 1006.4 1052.8

These data provide an opportunity for a tour through some S-Plus classical tests.
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tax <- read.table("taxrevenue", header = T)

tax

attach(tax)

a <- (y-x)/x ; b <- (z-y)/y # we compare relative increases.

#first, one-sample tests on a.

a ; summary(a)

t.test(a,mu=.10)

names(t.test(a))

t.test(a)$conf.int

# Now the nonparametric version of this.

wilcox.test(a, mu =.10)

t.test(a,mu =.01) ; wilcox.test(a,mu =.01) #compare p-values.

Now compare a with b, but pretending a, b independent of each other.

t.test(a,b) # This assumes the 2 variances are equal.

t.test(a,b,var.equal =F) # This doesn’t assume the 2 variances equal.

But, the above were WRONGLY applied: they assumed independent a, b. So now we do it correctly,
ie allowing for the PAIRING of a, b.

t.test(a,b,paired =T)

wilcox.test(a,b,paired =T)

Next we demonstrate 2 methods of testing the independence of a, b. The first, which uses the
Pearson correlation coefficient, is effectively assuming that we have a random sample from a bi-
variate normal distribution. The second, constructed by Spearman in the context of intelligence-
testing, tests for independence of a, b without making any assumption on the parent distribution
F (a, b), this is therefore a non-parametric test. It essentially replaces ai, bi by their ranks, eg
(1, 3), . . . , (n, n) and works out the corresponding Pearson coefficient. On the null hypothesis of
independence of a, b this has known distribution, depending only on n, the sample size.

cor.test(a,b)

cor.test(a,b,method ="spearman")

help(friedman.test) # experiment with this new non-parametric test.

# can you apply it to the data x, y, z ?

# Try some plots. Do they enlighten you ?

i <- 1:3 ; ttax <- t(tax)

matplot(i, ttax, type ="l") # might help

Here is another dataset, this time from The Independent, June 30, 1999, on the safety of multi-
purpose vehicles (MPV’s). The 8 types of vehicle were subjected to ‘Front Impact’ tests (in which
the front impact takes place at 40mph (64kph)) and ‘Side Impact’ tests, in which the side impact
takes place at 30mph (50kph)). The corresponding scores are given in the Table below: the higher
the score, the better the vehicle.

Frontal_score(%) Side_Score(%)

RenaultEspace 67 100

ToyotaPicnic 61 93

Peugeot806 42 93

NissanSerena 34 100

VolkswagenSharan 36 96

MitsubishiSpWagon 24 96

Opel/VauxhallSintra 21 93

ChryslerVoyager 0 89

Questions for you:
i) Is the Frontal Score significantly less than the Side Score?
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ii) Is there a positive association between these two scores?

‘How the world is getting hungrier each year’ is the headline in The Independent of 26 November,
2003, showing the following distressing data: for the following 40 countries, the percentage of the
population that is undernourished, for the years 1999-2001, and for 1990-92.

y99-01 y90-92

1 DRCongo 75 31

2 Somalia 71 68

3 Burundi 70 49

4 Afghanistan 70 58

5 Eritrea 61 63*

6 Mozambique 53 69

7 SierraLeone 50 46

8 Zambia 50 45

9 Haiti 49 65

10 Angola 49 61

11 CAR 44 50

12 Tanzania 43 35

13 Ethiopia 42 57*

14 Liberia 42 33

15 Rwanda 41 43

16 Zimbabwe 39 43

17 Mongolia 38 34

18 Cambodia 38 43

19 Kenya 37 44

20 Madagascar 36 35

21 Niger 34 42

22 Chad 34 58

23 NKorea 34 18

24 Yemen 33 35

25 Malawi 33 49

26 Bangladesh 32 35

27 Congo 30 37

28 Nicaragua 29 30

29 Guinea 28 40

30 PNewGuinea 27 25

31 Cameroon 27 33

32 Gambia 27 22

33 Iraq 27 7

34 Panama 26 20

35 Guatemala 25 16

36 Lesotho 25 27

37 Togo 25 33

38 DominicanR 25 27

39 Sudan 25 31

40 SriLanka 25 29

* corresponds to 1995-97, as the earlier figure was unavailable.
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New for July 2008: The Tompkins Table for Cambridge Colleges Examinations results, 2000−2008.
Each year The Independent publishes the examination rank order of the 29 Cambridge Colleges:
Emmanuel has been at the top of the Table for each 2006 and 2007, but now (ie 2008) Selwyn is
top.
Here is the Table of ranks for each of the last 9 year (note that certain colleges were only included
in this Table from 2003 onwards). Suggestions for a non-parametric test, and a plot of the various
college ‘tracks’ over the 8 years, are given below. First, here is the dataset.

College y00 y01 y02 y03 y04 y05 y06 y07 y08

Christs 1 1 4 2 2 4 6 2 8

Churchill 15 9 10 9 19 18 13 15 6

Clare 9 6 3 6 4 9 12 17 13

CorpusC 10 20 18 7 10 16 8 8 9

Downing 8 10 8 12 17 15 11 3 12

Emmanuel 3 2 2 1 1 5 1 1 2

Fitzwilliam 21 13 20 20 15 13 19 14 21

Girton 18 17 16 17 25 24 22 21 22

G&Caius 12 8 7 4 5 2 2 10 4

Homerton NA NA NA 25 24 26 25 26 25

HughesH NA NA NA 27 27 29 29 29 26

Jesus 13 11 9 10 9 7 10 9 7

Kings 20 21 14 16 20 10 17 18 19

LucyC NA NA NA 26 26 27 26 24 28

Magdalene 22 22 15 18 22 20 20 13 5

NewHall 16 23 24 24 23 25 24 23 23

Newnham 24 24 22 21 13 21 23 22 24

Pembroke 6 7 1 3 6 6 4 7 10

Peterhouse 14 19 23 22 21 22 21 25 17

Queens 5 5 5 5 8 8 14 11 16

Robinson 19 14 21 23 16 11 18 20 18

StCaths 11 18 12 11 7 1 3 5 11

StEdmunds NA NA NA 29 29 28 28 28 29

StJohns 4 4 11 13 14 12 15 19 20

Selwyn 7 12 13 14 11 19 7 4 1

SidneyS 23 16 19 15 18 14 9 12 14

Trinity 2 3 6 8 3 3 5 6 3

TrinHall 17 15 17 19 12 17 16 16 15

Wolfson NA NA NA 28 28 23 27 27 27

Tompkins <- read.table("Tompkins", header=T)

Tompkins <-Tompkins[-c(10,11,14,23,29),]#to remove the incomplete rows

matTomp <- as.matrix(Tompkins[,2:10])

friedman.test(t(matTomp)) #

Note that we transpose the matrix in order to test for the differences between the 24 colleges. The
Friedman test results in a chi-squared statistic of 150.82 on 23 df, apparently showing that there
are indeed systematic differences between these 24 colleges. However, this use of the Friedman test
may not be strictly valid, since consecutive years (‘blocks’ in the parlance of the Friedman test)
will not be independent. Each Tompkins score, for a given year and a given college, is obtained
from the examination results of students from years 1, 2 and 3 of that college. Thus typically a
particular student, arriving in say autumn 2001, will contribute to the scores of his/her college in
2002, 2003 and 2004.
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> round(cor(matTomp),2)

y00 y01 y02 y03 y04 y05 y06 y07 y08

y00 1.00 0.80 0.76 0.75 0.70 0.55 0.66 0.62 0.50

y01 0.80 1.00 0.83 0.75 0.69 0.65 0.62 0.54 0.47

y02 0.76 0.83 1.00 0.91 0.72 0.71 0.72 0.67 0.60

y03 0.75 0.75 0.91 1.00 0.78 0.71 0.83 0.73 0.65

y04 0.70 0.69 0.72 0.78 1.00 0.81 0.79 0.67 0.55

y05 0.55 0.65 0.71 0.71 0.81 1.00 0.78 0.62 0.45

y06 0.66 0.62 0.72 0.83 0.79 0.78 1.00 0.86 0.78

y07 0.62 0.54 0.67 0.73 0.67 0.62 0.86 1.00 0.77

y08 0.50 0.47 0.60 0.65 0.55 0.45 0.78 0.77 1.00

This does indeed fit in with the suggestion of positive correlation between successive years. In this
case I suspect that the Friedman test statistic of 150.82 should actually be ‘deflated’ by a suitable
factor (but what is this?) before referring it to the χ2 distribution. Now we show a method of
plotting the ‘time tracks’ of the 24 colleges.

college <- Tompkins[,1] # to set up college names

# we could use ‘matplot’ to plot the tracks of the individual colleges,

# but ‘interaction.plot’ turns out to be quicker to use

v <- as.vector(matTomp) # this reads DOWN the rows

College <- gl(24,1, length=216, labels = college)

Year <- gl(9,24, length=216, labels=2000:2008)

y <- 25-v # to make graph give ‘best’ college at the TOP

interaction.plot(Year, College, y, col=c("black", "red", "green3", "blue"), ylab="")

This results in Figure 1. Some of the middling ‘tracks’ do seem to go all over the place.
Following a suggestion by Dr Richard Gibbens, we could also also plot the ‘tracks’ another way,

resulting in Figure 2.

library(lattice)

year <- gl(9,24, length=216, labels=c(0:8)) # to reduce clutter on plot

xyplot(y~year|College, type="l")

Here is a fuller version of the Tompkins Table for 2008, in rank order.

College score %firsts

1 Selwyn 68.47 29.9

2 Emmanuel 68.30 30.6

3 Trinity 68.27 31.4

4 G&Caius 67.33 27.9

5 Magdalene 65.97 24.5

6 Churchill 65.72 27.1

7 Jesus 65.60 25.2

8 Christs 65.27 25.7

9 CorpusC 65.24 24.1

10 Pembroke 64.96 24.5

11 StCaths 64.63 23.5

12 Downing 64.48 22.8

13 Clare 64.44 22.5

14 SidneyS 64.22 20.9

15 TrinityH 63.76 19.3

16 Queens 63.58 22.3

17 Peterhouse 63.21 22.9

18 Robinson 63.20 20.6
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19 Kings 63.07 22.5

20 StJohns 62.48 20.5

21 Fitzwilliam 61.08 18.2

22 Girton 60.84 15.3

23 NewHall 60.03 13.9

24 Newnham 59.96 13.3

25 Homerton 58.62 13.0

26 HughesHall 56.36 20.8

27 Wolfson 55.15 7.4

28 LucyC 52.61 8.7

29 StEdmunds 51.56 11.2

So you see that the two columns are correlated, but not perfectly correlated.
You may well want to know exactly how the Tompkins score is computed. The table allocates 5,
3, 2, 1, 0 points respectively for each of a First, a 2-1, a 2-2, a 3rd and ‘granted an allowance’. (I
think that complete failures are not counted at all.) Then to quote Wikipedia
“The scores in each subject are then weighted to a common average, to avoid the bias towards
colleges with higher proportions of students entered for subjects which receive higher grades. The
result is then expressed as a percentage of the total number of points available.”
(Hence for construction of the Tompkins table, a First in Mathematics (for example) for college x
‘counts’ less than a First in English for college x.)

The Independent, 5 August 2008, presents the following cricketing data, under the headline ‘For
better or Worse: England’s captains’ performances since Tony Greig. (This item follows the
resignation of Michael Vaughan as England’s Captain.) We can compare the batting average of an
individual player when he was Captain with his batting average when he was not Captain.
With the help of my colleague Dr Richard Samworth (using cricinfo) I have corrected the figures
given in the Independent for Stewart.

MC AvC MnC AvnC

Greig 14 38.04 44 41.32

Brearley 31 22.48 8 24.28

Botham 12 13.14 90 36.74

Willis 18 21.59 72 26.31

Gower 32 43.59 85 45.50

Gatting 23 44.05 56 32.21

Gooch 34 58.72 84 35.93

Atherton 54 38.73 61 35.25

Stewart 15 39.22 118 39.59

Hussain 45 36.04 51 38.10

Vaughan 37 36.02 45 50.98

Flintoff 11 33.23 58 32.32

key: MC= number of matches as Captain,

AvC = batting average as Captain

MnC = number of matches not as Captain,

AvnC = batting average not as Captain.

Here is my suggestion for plotting the data. You may also like to think of some suitable non-
parametric tests: eg is the batting average of a Captain smaller than his batting average when not
a Captain? Can you do anything useful with the information on the numbers of matches played?

Cricket <- read.table("Cricket.data", header=T)

attach(Cricket)
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Figure 3: Comparing the batting averages of England Captains

captains <- row.names(Cricket)

plot(AvC ~ AvnC, type="n", xlab = "average not as Captain",

ylab = "average as Captain", xlim=c(10,60), ylim=c(10,60))

text(AvC ~ AvnC, labels=captains)

This results in Figure 3 as shown.
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2. Getting started in S-Plus for Multivariate Analysis
We start by simulating a sample of 200 observations from a given 3-dimensional normal. (You

could do this via the function rmvnorm() if you prefer.)

i <- 1:200

x <- rnorm(i) # to generate 200 NID(0,1) rvs

y <- rnorm(i) # to generate a further set of 200 NID rvs

z <- rnorm(i) # and again.

v1 <- 2*x + y + 29

summary(v1)

v2 <- x+z+10

v3 <- 3*x + 72 # now (v1,v2,v3) form a r.s. of 200 observations

# from a specified 3-variate normal distribution.

a <- cbind(v1,v2,v3) # a is the corresponding data-matrix

plot(v1,v2)

pairs(a)

brush(a) # can you see what’s going on ?

options(digits =4) # makes things easier on the eye

b.cov <- var(a) # the sample covariance matrix

b.cov # how close is it to the true covariance matrix?

b.cor <- cor(a) # the sample correlation matrix

b.cor

b.lm <- lm(v1~ x+y)

summary(b.lm)

hist(v1) # does this look as you would expect ?

e.cov <- eigen(b.cov) ; names(e.cov) # eigen-values etc

e.cor <- eigen(b.cor)

e.cov ; e.cor # why are these 2 sets of e-vals different ?

#(Now we do DIY calculation of sample covariance matrix)

col.means <- apply(a,2,mean)

col.means ; help(apply)

col.resid <- sweep(a,2,col.means) ; help(sweep)

# "apply" & "sweep" are not terms you’ld ever have thought of !

cov.diy <- t(col.resid) %*% col.resid # t( ) is transpose

# You can probably find a more elegant way of computing cov.diy.

cov.diy <- cov.diy/199 # %*% is matrix mult’n

cov.diy ;b.cov # for comparison

# Here’s another useful function.

b <- scale(a,center =T,scale =T) # NB U.S. spelling

pairs(b)

var(a) ; var(b)

cor(a) ; cor(b) # Now try a Hotelling T-Test.

Now we set up a function to compute the bivariate normal density function, for correlation co-
efficient ρ, calculate this density at each point in a 20 × 20 grid, and demonstrate three ways of
plotting this density.
We compute

f(x, y) = exp−(x2 − 2ρxy + y2)/2(1 − ρ2).

x <- seq(-2,2, length= 40); y <- x; rho <- .7

bivnd <- function(x,y){

exp(-(x^2 - 2*rho *x *y +y^2)/(2*(1- rho^2)))

}

z <- x %*% t(y) # to set up z as a matrix of the right size
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Figure 4: The bivariate normal density with ρ = 0.7, a contour plot

for (i in 1:40){

for (j in 1:40){

z[i,j] <- bivnd(x[i],y[j])

}

}

contour(x,y,z)

image(x,y,z)

persp(x,y,z)

The resulting three plots are given respectively as Figures 4, 5 and 6.

Repeat, experimenting with different values of ρ. Think about the problem of simulating a
sample of size n from this distribution, and then checking its empirical density.
In fact nested loops, while possible in SPlus, are to be avoided if possible (see Venables and Ripley’s
book). A little thought about matrix algebra shows us that they do not need to be used here. Try
the following.

x2 <- x^2 ; y2 <- y^2

one <- rep(1, times= 40) # this is the unit vector, of length 40.

z0 <- (x2 %*% t(one) - 2 * rho * x %*% t(y) + one %*% t(y2))/(2*(1- rho^2))

z0 # to check that z0 is a matrix

z <- exp(-z0)

contour(x,y,z) # and so on....

Finally, as an optional extra, we plot an ellipse, as shown in Figure 7, to show the shape of a
contour of the bivariate normal density function.
The ellipse will be centred at (x0, y0). What are a, b and alpha?

a <- 3 ; b <- 4; alpha <- pi/3; x0 <- 1 ; y0 <- 2

theta <- seq(0, 2*pi, length=1000)

x <- x0 + a*cos(theta)* cos(alpha) - b*sin(theta)*sin(alpha)

y <- y0 + a*cos(theta)* sin(alpha) + b*sin(theta)*cos(alpha)

plot(x,y, type="l")
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Figure 6: The bivariate normal density with ρ = 0.7, a perspective plot
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Figure 7: An ellipse

points(x0, y0, pch=20) # to show the centre of the ellipse

Why does this correspond to a pdf with NEGATIVE correlation?
I got the code from a reply to Rhelp in October 2006 by Alberto Monteiro. If you eliminate θ from
the expressions for x, y you should be able to write the equation of the above ellipse as in the usual
form, and hence find the correlation coefficient ρ in terms of a, b, α.
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Figure 8: Illustrating conditional independence

3. Graphical models for normal distributions: a simulation, and new for 2008 an analysis of
the Times Online Good University Guide dataset.
First we generate data from a multivariate normal distribution, with x1, x2, x3 mutually indepen-
dent, conditional on x4. So the corresponding graphical model for dependencies is as shown in
Figure 8.

We show that a more conventional multivariate analysis, ie principal components, will not pick up
this structure.
(Would a factor analysis detect the structure?)

Splus6

i <- 1:100 ; x4 <- rnorm(i) # first generate x4

x1 <- 7*x4 + (.5)*rnorm(i);x2 <- 8*x4+(.7)*rnorm(i)

x3 <- -10*x4 + rnorm(i)

a <- cbind(x1,x2,x3,x4) # This is our data matrix

pairs(a) # for pairwise associations

v <- var(a) # sample covariance matrix

inv <- solve(v) # inverse sample cov.matrix

round(v,2) ; round(inv,2) # to have a look at them.

Note:
var(x4|all remaining variables) = 1/inv44

where inv is the inverse of the covariance matrix of the x′s.
Hence for example, we see that var(x4|x1, x2, x3) is SMALL compared with var(x4), ie, x4 is
closely determined by x1, x2, x3. Check this by

l.m <- lm(x4~x1+x2+x3) ; summary(l.m)

Note: standard theory also shows that, for example,

corr(x1, x2|all remaining variables) = −inv12/
√
inv11inv22.
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Inspection of inv also shows us for example, that corr(x1, x2|remaining variables) is LOW, and
corr(x1 , x4|remaining variables) is HIGH.
A more cunning way to find these conditional correlations is to use the linear model ‘trick’.

y <- 1:100 #Invent a y-variable

trick.lm <- lm(y~x1+x2+x3+x4)

summary(trick.lm, cor= T)

This has given us MINUS the matrix of conditional correlations. (Ignore the column corresponding
to ‘intercept’.)
Now let’s try principal components.

a.pr <- princomp(a) #for principal components

first <- a.pr$x[,1];second <- a.pr$x[,2] # first 2 princ. comps

b <- cbind(a,first,second); pairs(b)

This plot will show us how x1,... are related to first and second principal components.

round(cor(b),2) # x4 has no special role.

# We can use the D-matrix to compute appropriate test statistics:

d <- diag(inv) ; d<- 1/d ; d<- sqrt(d) #gives vector of 1/sqrt(d(i,i))

dd <- matrix(d) #turns it into 4X1 matrix

t.d <- dd %*% t(dd) #gives matrix of (1/sqrt(d(i,i)d(j,j)))

corr <- inv*t.d # note, element by element multiplication

chi.sq <- 1 - corr^2

chi.sq <- -100*log(chi.sq)

chi.sq # refer each term to chi-sq(1) to test sig.

# See Whittaker, p175

You could experiment with a ‘heat map’ picture of the correlation (or conditional correlation)
matrix. You do have to remember that whereas a graph is indexed from the bottom left-hand
corner, with a matrix we count from the top left-hand corner.

z = cor(a) # for the 4 by 4 correlation matrix

i = 1:4 ; j = 4:1

zz = z[i,j] # necessary ‘flip’

ii= 1:4; jj = 1: 4 ; image(ii,jj,zz)

New for 2008: the Times Online Good University Guide data from April 28, 2008.
Firstly, here is the dataset for 2008, omitting the institution names. The column headings are
R= Rank (there are some ties), StudSat = Student Satisfaction (with some NA’s), ResQual=
Research Quality,
ServSpend= Services and Facilities spend, Entry= Entry Standards, Compl= Completion rate,
GoodH = percentage getting a ‘Good Honours’ degree
GradProsp = Graduate Prospects, Total= Total score.

R StudSat ResQual StudStaff ServSpend Entry Compl GoodH GradProsp Total

1 1 NA 6.2 13.0 2671 522 98.6 89.4 78.6 1000

2 2 NA 6.5 12.2 2097 530 97.9 84.5 87.9 995

3 3 3.9 5.8 9.7 2828 453 96.0 72.4 86.0 960

4 4 3.9 6.3 13.2 1416 471 96.9 74.6 83.0 915

5 5 4.1 5.3 15.4 1009 458 94.8 79.7 72.6 841

6 6 3.9 5.5 9.4 1623 429 94.3 72.5 79.8 832

7 7 NA 5.6 17.1 1724 453 96.7 79.3 73.0 813

8 8 3.9 5.2 14.9 1426 440 95.8 81.3 76.0 811

9 9 4.0 5.2 20.3 1250 452 96.4 75.4 75.8 810

10 10 4.0 4.7 12.4 1546 399 93.2 67.2 79.8 777

11 11 3.8 5.2 16.7 1235 443 95.3 76.8 78.9 764
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12 12 4.1 4.3 17.6 1217 368 94.0 63.8 69.7 755

13 13 3.8 5.0 14.5 1254 458 92.2 77.8 76.4 742

14 14 4.0 5.4 16.7 1323 402 90.7 71.3 67.8 738

15 15 3.9 3.9 14.6 1701 346 88.4 64.3 76.9 734

16 16 3.9 5.5 15.0 1144 436 95.2 71.0 64.3 733

17 17 4.0 4.7 16.8 1016 387 94.8 74.6 65.6 726

18 18 3.8 5.3 9.5 1603 365 84.4 69.2 73.3 722

19 19 3.8 5.0 15.6 1368 431 96.2 74.5 70.7 721

20 20 4.1 5.0 17.0 1104 364 91.2 65.4 59.2 709

21 21 4.1 4.5 16.2 1149 371 92.9 62.5 64.6 705

22 22 3.9 4.5 15.1 1085 408 92.4 73.3 70.3 699

23 23 3.9 4.4 16.7 1402 390 92.3 67.6 72.9 694

24 24 3.9 5.2 13.9 1093 356 88.2 71.3 61.9 688

25 25 4.0 4.9 16.8 914 358 91.7 69.1 64.5 683

26 26 3.9 4.3 16.6 1200 389 92.4 69.6 70.2 678

27 27 3.9 5.4 15.8 1074 366 92.5 64.2 61.0 670

28 28 3.9 4.5 13.9 1136 377 90.1 66.3 70.1 658

29 29 3.8 5.1 14.6 1323 406 92.3 68.8 65.6 656

30 30 3.9 4.5 18.4 972 387 92.1 71.2 68.0 653

31 31 3.9 4.3 13.9 1130 425 85.5 64.8 68.0 650

32 32 NA 4.0 13.9 1174 447 78.8 64.3 75.8 648

33 33 3.9 4.3 17.2 1164 363 86.6 69.1 73.2 626

34 34 3.9 4.6 15.5 916 370 90.0 64.8 70.8 625

35 35 3.7 5.1 13.6 1136 382 88.3 70.3 61.6 621

36 36 3.9 4.8 14.7 1111 316 83.4 56.8 63.2 611

37 37 NA 3.9 14.5 1027 334 89.9 62.0 66.9 609

38 38 3.9 4.0 16.4 1093 324 87.0 60.5 65.1 608

39 39 4.1 4.0 19.2 976 299 89.8 61.1 56.1 607

40 40 3.7 4.7 15.9 1089 341 86.8 61.6 79.1 603

41 40 3.9 3.7 18.7 748 318 85.0 63.9 80.6 603

42 42 3.8 4.7 12.8 1088 342 88.5 61.6 72.6 599

43 42 4.0 3.2 19.0 761 294 83.9 57.3 71.1 599

44 44 NA 3.6 18.3 998 429 81.8 67.9 71.2 598

45 45 NA 4.2 16.8 1056 375 82.3 57.9 61.0 551

46 46 3.9 4.4 16.9 979 289 88.3 54.1 60.1 531

47 47 4.0 3.9 16.9 1042 290 77.0 50.0 65.8 530

48 48 3.9 3.4 18.6 1105 265 82.2 54.2 75.8 519

49 49 3.9 1.6 17.0 908 295 84.9 56.6 72.1 512

50 50 NA 4.2 17.6 939 382 68.7 58.6 74.6 502

51 51 3.7 3.1 16.7 1188 302 85.4 63.7 63.3 496

52 52 3.8 4.9 20.2 758 297 82.2 58.9 58.4 486

53 53 3.9 2.4 19.2 1345 279 77.0 61.8 59.2 485

54 54 3.8 4.0 18.1 693 314 84.3 56.0 64.1 484

55 55 NA 0.9 18.5 927 311 79.8 53.4 81.8 480

56 56 3.7 1.4 19.1 810 283 89.1 53.3 77.1 456

57 57 4.0 4.4 26.2 554 258 76.9 60.5 67.7 453

58 58 NA 1.5 21.3 710 333 77.7 60.3 75.2 447

59 59 3.5 4.4 18.7 873 391 87.1 57.9 51.3 442

60 60 3.9 1.6 17.5 1017 275 81.2 55.9 55.5 437

61 61 3.8 1.7 18.1 805 280 83.0 55.3 64.2 425

62 62 NA 1.2 18.1 767 354 74.8 60.0 61.6 419

63 62 3.7 0.7 18.5 851 278 85.2 59.8 63.7 419

64 64 3.9 1.1 18.1 943 241 79.8 52.2 53.3 399

65 65 3.9 1.3 16.3 1063 273 69.3 52.1 53.4 397
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66 66 3.8 0.8 16.2 1024 252 77.3 57.7 62.5 396

67 67 NA 0.8 17.8 960 292 73.3 57.4 61.8 393

68 68 3.9 1.7 21.0 652 242 88.0 45.1 59.2 391

69 69 3.9 1.5 20.6 746 265 84.5 54.7 49.4 385

70 70 3.8 0.9 17.4 928 246 76.9 48.1 66.3 383

71 71 3.8 1.9 20.3 1257 237 79.5 52.7 55.6 382

72 72 3.8 1.6 19.8 867 266 80.6 56.7 59.8 380

73 73 3.8 1.1 21.9 1031 291 80.7 52.4 59.3 375

74 74 3.8 1.7 20.2 1000 242 80.5 51.3 53.7 371

75 75 3.8 0.8 20.7 1077 248 85.1 48.4 54.5 366

76 75 3.9 1.0 20.6 929 239 73.7 56.0 61.1 366

77 75 3.9 1.1 20.4 583 252 83.5 45.8 62.4 366

78 78 3.9 0.5 19.1 826 228 74.9 56.5 56.7 365

79 79 3.8 1.7 19.0 758 256 81.4 48.0 59.3 363

80 80 3.8 1.2 18.3 882 228 78.6 49.2 64.0 362

81 81 3.8 1.7 16.7 710 238 77.0 50.4 56.1 360

82 82 3.9 1.0 19.4 692 221 80.0 56.8 55.4 359

83 83 3.7 2.1 16.7 857 269 73.2 53.5 59.7 356

84 84 NA 0.6 23.4 1808 207 75.4 41.1 59.6 348

85 85 3.8 1.2 18.5 840 252 77.1 48.4 57.1 335

86 85 3.8 1.4 18.5 860 235 75.9 45.1 61.9 335

87 87 3.7 1.1 23.8 911 270 85.0 55.4 61.2 332

88 88 3.7 1.5 24.4 502 264 85.7 67.7 54.8 328

89 89 3.8 0.8 20.2 828 221 80.8 45.4 63.1 323

90 90 3.8 1.2 18.9 822 261 75.2 47.8 53.7 319

91 91 3.7 1.2 17.5 739 229 80.5 56.4 53.5 318

92 92 3.9 0.9 20.6 610 244 78.9 46.0 55.5 317

93 93 3.9 0.8 17.7 785 179 63.3 51.7 64.7 316

94 94 NA 0.7 20.0 1085 313 68.7 43.8 55.5 311

95 95 3.9 0.7 20.7 705 236 74.4 44.6 63.0 310

96 96 3.7 0.8 23.2 928 263 82.7 49.0 59.5 305

97 97 3.7 1.4 21.5 753 246 80.6 47.7 63.8 303

98 98 3.8 0.9 22.4 978 215 77.0 49.8 57.1 298

99 99 NA 1.4 22.3 1298 190 68.5 40.0 58.0 284

100 100 3.8 0.5 17.8 672 253 76.1 46.1 48.4 280

101 100 NA 0.7 19.8 1478 214 64.0 47.2 51.9 280

102 102 3.7 0.4 25.6 780 266 85.4 49.9 61.7 276

103 103 NA 1.3 23.1 800 191 72.0 51.7 61.9 270

104 104 3.8 0.5 19.9 615 242 64.8 52.7 61.5 262

105 105 3.7 0.5 21.6 940 224 78.2 43.9 48.8 247

106 106 3.9 0.4 22.8 248 243 78.3 38.1 55.7 242

107 107 3.6 0.6 22.8 626 257 76.6 46.5 70.7 229

108 108 3.7 1.3 29.6 1576 189 71.9 46.5 55.7 219

109 109 3.6 0.7 26.3 793 255 83.9 52.3 48.9 214

110 109 3.7 1.2 24.0 791 210 79.7 42.3 57.3 214

111 111 3.6 0.4 19.4 586 202 69.5 48.7 61.9 209

112 112 3.7 0.6 21.2 917 204 73.9 43.5 52.6 207

113 113 3.7 0.7 24.3 833 220 73.6 47.0 52.6 191

I used only the variables

ResQual, ..., GradProsp

for which the corresponding pairs plot is Figure 9. Finally, here is the matrix of conditional corre-
lations, derived as above. You will see that the only two variables that have a strong correlation,
conditional on the remaining five variables, are ‘GoodHon’ and ‘Entry’.
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Figure 9: The pairs plot for the Times Online Good University Guide data, 2008
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ResQual StudStaff ServSpend Entry Compl GoodH GradProsp

ResQual 1.00 -0.24 0.06 0.31 0.28 0.21 0.00

StudStaff -0.24 1.00 -0.15 -0.17 0.14 -0.02 -0.12

ServSpend 0.06 -0.15 1.00 0.08 -0.03 0.07 0.12

Entry 0.31 -0.17 0.08 1.00 0.18 0.48 0.24

Compl 0.28 0.14 -0.03 0.18 1.00 0.21 -0.02

GoodH 0.21 -0.02 0.07 0.48 0.21 1.00 0.07

GradProsp 0.00 -0.12 0.12 0.24 -0.02 0.07 1.00

Afterthought: the above analysis was perhaps a bit simple-minded, since

hist(ResQual)

shows that this variable has a clearly bi-modal distribution. You could try using only the first 60
rows of the data-matrix in your analysis.
In case you feel you really HAVE to know the rank order of the 113 Universities concerned, here
it is (I abbreviated some of the names). I see that Cambridge is second. Huh!

[1] Oxford Cambridge

[3] Imperial_College London_School_of_Economics

[5] St_Andrews University_College_London

[7] Warwick Bristol

[9] Durham Kings_College_London

[11] Bath Loughborough

[13] Edinburgh Southampton

[15] Aston York

[17] Exeter S_O_A_S

[19] Nottingham East_Anglia

[21] Leicester Sheffield

[23] Newcastle Royal_Holloway

[25] Reading Birmingham

[27] Lancaster Cardiff

[29] Manchester Leeds

[31] Glasgow Aberdeen

[33] Queens_Belfast Liverpool

[35] Sussex Essex

[37] Stirling Kent

[39] Aberystwyth Surrey

[41] City Queen_Mary_London

[43] Hull Strathclyde

[45] Heriot-Watt Swansea

[47] Bangor Bradford

[49] Oxford_Brookes Dundee

[51] Brunel Goldsmiths_London

[53] Ulster Keele

[55] Robert_Gordon Nottingham_Trent

[57] Lampeter Queen_Margaret_Edinburgh

[59] Univ_of_the_Arts,London Plymouth

[61] Brighton Glasgow_Caledonian

[63] Bournemouth Staffordshire

[65] Glamorgan UCE_Birmingham

[67] Napier Chichester

[69] Winchester Central_Lancashire

[71] Roehampton West_of_England

[73] Northumbria Gloucestershire

[75] UWIC_Cardiff Coventry
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[77] Canterbury_Christ_Church Newport

[79] Portsmouth Kingston

[81] Sunderland Northampton

[83] Salford Bedfordshire

[85] LiverpoolJohnMoores Hertfordshire

[87] Sheffield_Hallam Bath_Spa

[89] Worcester Manchester_Metropolitan

[91] Westminster Huddersfield

[93] Bolton Paisley

[95] Teesside Leeds_Metropolitan

[97] DeMontfort Derby

[99] East_London Chester

[101] Abertay York_St_John

[103] London_South_Bank Anglia_Ruskin

[105] Southampton_Solent Edge_Hill

[107] Cumbria Middlesex

[109] Lincoln Greenwich

[111] Thames_Valley Wolverhampton

[113] Liverpool_Hope
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Figure 10: Fisher’s Iris data: a simple pairs plot

4. Manova on 3 groups, using Fisher’s classic Iris data
This dataset consists of 50 cases of each of 3 species, namely Iris setosa, Iris virginica, and Iris
versicolor. Each case has 4 measurements on the length and width of its petals and sepals.

R

data(iris)

ir.species <- gl(3,50, length=150, labels=c("s", "c", "v"))

pairs(ir) # not so revealing: we need to label the 3 species separately.

plot(ir[,1:2], type="n")

text(ir[,1:2], labels=as.character(ir.species)) # for a simple pairwise plot

# but, for a really good plot, we use the R example, thus

pairs(iris[1:4], main = "Anderson’s Iris Data -- 3 species",

+ pch = 21, bg = c("red", "green3", "blue")[unclass(iris$Species)])

These pairwise plots result in Figures 10 and 11 respectively, and show some separation between
the three groups.

summary(aov(ir[,1] ~ ir.species)) # for a 1-way anova on the 1st vector

iris.manova <- manova(ir~ ir.species) # for the manova

summary(iris.manova, univar=T) # compare with result of aov()

summary(iris.manova, test="wilk") # to look at the whole vector

liris.manova <- manova(log(ir)~ ir.species) #to try log-transform

summary(liris.manova, test="wilk")

The iris dataset works almost too well. For a fun dataset, where the separation between the groups
is less clearcut, try the painters data (de Piles).
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Figure 11: Fisher’s Iris data: a full pairs plot
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library(MASS)

?painters

x <- painters[,1:4] ; x <- as.matrix(x)

school <- painters[,5]

is.factor(school) ; table(school)

painters.manova <- manova(x~ school)

summary(painters.manova, univar =T)

summary(painters.manova,test ="wilk")

for (i in 1:4){

+ cat(round(tapply(x[,i],school,mean),3),"\n")

+ }

# This shows us the differences between the Schools.

Exercise: do a ‘pairs’plot of the ‘painters’ data, with a different plotting symbol for each of the 8
Schools.
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5. Linear discrimination between groups.
Let x be the original data vector, and consider doing a 1-way anova on the scalar quantity y = uTx.
We want to choose a u such that the 1-way anova on y gives maximal separation between the groups:
hence you can see that we aim to solve the problem:
choose u to maximise uTBu subject to uTWu = 1, where B,W are the between-groups and within-
groups sums of (squares and products) matrices, respectively.
This gives us that Bu = λWu, and so taking λ as the largest such value gives the maximum value
of uTBu/uTWu.
Hence, for the transformed variable y = uTx, in the 1-way anova, we find that
‘between groups ss/(within groups ss)’ = λ, and hence
‘between groups ss/ total ss’ = λ/(λ+ 1) = R2,
where R2 is the usual multiple regression R2: in this case it measures how well the separation into
groups explains the overall variation.
In the example below, each of B, W is a 4× 4 matrix, and since there are just 3 groups, it follows
that B is of rank 2, hence the final λ, and hence the final R2, is effectively zero.

We use the Iris dataset defined above, and compare 2 methods. (The function lda() is also used
on this dataset in Venables and Ripley, 4th edition.)

a <- log(ir) ; grou <- ir.species # for convenience

teeny.dis <- discr(a,3 )

teeny.dis

teeny.dv <- a %*% teeny.dis$vars #new coords

teeny.x <- teeny.dv[,1]

tapply(teeny.x,grou,mean)

Now relate this to teeny.dis output. I have always had great difficulty interpreting

teeny.dis$groups

but in fact the ?discr does tell you what to expect. Here goes.
Taking the first column of the 3 × 3 matrix

teeny.dis$groups,

we set

x1 <- c(rep(0.8074378, times =50), rep(-0.2986802,times =50), rep( -0.5087577,times =50))

cor.test(x1, teeny.x)

and sure enough, this reveals to us the correlation 0.9887738, as we get for the first component of

teeny.dis$cor

above.

par(mfrow =c(3,1)) # 3 plots on 1 page

hist(teeny.x[grou=="s"]);hist(teeny.x[grou =="c"]);hist(teeny.x[grou =="v"])

par(pty ="s") # to make graph frames SQUARE

par(mfrow =c(1,1))

teeny.y <- teeny.dv[,2]

plot(teeny.x,teeny.y,type ="n",xlab ="first disc var",ylab ="second disc var")

text(teeny.x,teeny.y, labels = as.character(ir.species))

We now compare with data in original co-ordinates
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v1 <- a[,1] ; v2 <- a[,2]

plot(v1,v2,type ="n") ; text(v1,v2, labels= as.character(ir.species))

library(MASS)

?lda

ir.lda <- lda(log(ir), ir.species)

ir.lda

plot(ir.lda) # we’ll do this another way now

ir.ld <- predict(ir.lda, dimension =2)$x

plot(ir.ld, type ="n", xlab = "first lin discr", ylab = "second lin discr"))

text(ir.ld, labels = as.character(ir.species), cex =1.0)

Here’s how to apply it for the painters’ dataset.

summary(painters)

table(School)

k <- scan()

10 6 6 10 7 4 7 4

x <- painters[,1:4]

first.dis <- discr(x,k) ; first.dis
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6. Principal Components Analysis

The data below are from Hartigan, 1975, “Clustering Algorithms” Our first object is to see whether
the 9 points in 5 dimensions can be represented as 9 points in a plane. Here is Hartigan’s data set.

energy protein fat calcium iron

beef 180 22 10 17 3.7

chicken 170 25 7 12 1.5

clams 45 7 1 74 5.4

crabmeat 90 14 2 38 0.8

mackerel 155 16 9 157 1.8

salmon 120 17 5 159 0.7

sardines 180 22 9 367 2.5

tuna 170 25 7 7 1.2

shrimp 110 23 1 98 2.6

food <- read.table("food",header=T) ; food

attach(food)

a <- data.matrix(food) ; a

a.cov <- var(a) ; a.cov

a.corr <- cor(a) ; a.corr

pairs(a)

help(princomp)

a.pcp <- princomp(a) ; names(a.pcp)

a.pcp # Can you understand what it’s telling you ?

a.pcp$sdev # What are these ?

help(eigen) # We find out directly.

x <- eigen(a.cov) ; names(x)

x$values

z <- a.pcp$sdev ; z <- z*z ; z

Do you see the connection? Let’s get a plot of the 9 points using first 2 principal components.

a.pcp # for a reminder

x1 <- a.pcp$scores[,1] # first column

x2 <- a.pcp$scores[,2] # second column

plot(x1,x2) # but we really need to label the points

a.lab <- row.names(food)

plot(x1,x2,type="n",xlab ="first principal component",ylab="second principal component")

text(x1,x2,a.lab)

This gives us Figure 12. Because of the high variability of calcium relative to the other 5 variables,
this variable will dominate the dominate the first principal component, as is shown by Figure 13,
which is obtained by

plot(x1,calcium,type="n") ; text(x1,calcium,a.lab)

We may prefer to standardise all the original variables to have mean 0, variance 1 before we do the
principal components analysis. Thus, in effect, we find the eigen-values of the correlation matrix
rather than those of the covariance matrix. Of course, this gives each of the 5 variables “equal
weight” in the analysis. The final plots may look completely different from the plots which result
from the unstandardised variables.
A problem for you: compute the standardised data matrix from a above, and do the principal
components analysis on this.
Compare the results of the above with what you get from princomp() . You should also try
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Figure 14: The biplot for the standardised food data

a.pcp <- princomp(a,cor =T)

a.pcp$loadings

Loadings:

Comp.1 Comp.2 Comp.3 Comp.4 Comp.5

energy -0.601 -0.173 0.778

protein -0.516 0.277 0.714 -0.374

fat -0.519 -0.286 -0.286 -0.561 -0.503

calcium -0.123 -0.793 0.533 0.268

iron 0.297 -0.458 -0.773 0.321

Comp.1 Comp.2 Comp.3 Comp.4 Comp.5

SS loadings 1.0 1.0 1.0 1.0 1.0

Proportion Var 0.2 0.2 0.2 0.2 0.2

Cumulative Var 0.2 0.4 0.6 0.8 1.0

Note: Figure 14 shows a biplot of the data. This is an ingenious 2-dimensional picture of the data
(using the standardised variables) is produced by

biplot(a.pcp)

The directions of the arrows in the biplot correspond to the ‘loadings’ of components 1 and 2.
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7. Hierarchical Cluster Analysis.

Here is a data set which represents 10 points in 3 dimensions, and I choose this very small data-set
so that you can see what to expect from the result of the cluster analysis.

0 2 3

4 5 6

70 7 7

10 11 12

3 4 5

6 7 18

19 20 21

22 23 44

25 26 27

28 29 30

Here’s how to analyse it in R (S-Plus will do the same, but with slightly different terminology). A
fundamental problem with hierarchical cluster analysis is that there are several ways of choosing the
distance function, and having made that particular choice, there are then several ways of choosing
the particular method of clustering: this is because we can define the distance between two clusters
in several different ways. You have to realise that cluster analysis is a ‘data-analytic’ method, ie a
(sensible) way of reducing a complex dataset, but it does not depend on any fundamental statistical
modelling ideas such as likelihood, parameters, goodness of fit etc.

a <- read.table("tinycluster") ; a

a <- data.matrix(a) ; a

Observe that R can cope with missing values in constructing a distance matrix.

d <- dist(a,method ="euclidean")

round(d,2) # which results in the interpoint distances below

1 2 3 4 5 6 7 8 9

2 5.83

3 70.29 66.04

4 16.19 10.39 60.34

5 4.12 1.73 67.10 12.12

6 16.91 12.33 64.94 8.25 13.67

7 31.76 25.98 54.46 15.59 27.71 18.63

8 51.05 45.74 62.68 36.22 47.36 34.47 23.39

9 42.15 36.37 52.78 25.98 38.11 28.34 10.39 17.52

10 47.35 41.57 52.70 31.18 43.30 33.35 15.59 16.37 5.20

# You can see that points 2 and 5 are the closest of the 10.

par(mfrow=c(2,1))

h1 <- hclust(d,method ="complete") # this is the default method

names(h1)

plclust(h1) # does this make sense to you ?

h2 <- hclust(d,method ="single")

plclust(h2) # Observe differences from previous plot

# Now we’ll put labels on the points

teeny.lab <- scan(,"")
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# NB,blank line

par(mfrow=c(1,1))

plclust(h2,labels =teeny.lab)

This results in the graph given in Figure 15.

Now we’ll try an example of some BINARY data.
Here’s my file for the Lent 2003 cohort of graduate students.
The questions are
1.do you eat eggs?
2.do you eat meat?
3.do you drink coffee?
4.do you like beer?
5. Are you a UK resident?
6. Are you a Cambridge graduate?
7. Are you female?
8. Do you play sports?
9. Do you have a full driving licence?
10.Are you left-handed?
The students gave the responses Yes or No, as ‘y’, ‘n’ respectively.
I admit these questions are BORING, but more interesting, personal questions might not be
publicly usable, as these are.

...........................................................................

data for Lent 2003
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eggs meat coffee beer UKres Cantab Fem sports driver Left-h

Vivienne y n y n y n y y y n

Taeko y y y n y y y n n n

Luitgard y n y n n n y y y n

Alet y y y y n n y n y n

Tom y y y y y y n y y n

LinYee y y y n n n n y y n

Pio y y y n n n n y n n

LingChen y y n n n n y y n n

HuiChin y y y n n n y y y n

Martin y y y y y n n y y n

Nicolas y y y y n n n y y y

Mohammad y y y n n n n n y n

Meg y y y n n n y y n n

Cindy y y y y n n y y y n

Peter y y y y n n n y y n

Paul y y n y y y n y n n

# What follows below was done in S-Plus

a <- read.table("students2003", header=T)

student.lab <- row.names(a)

a ; student.lab

a <- (a=="y")*1 # to convert to 0,1 data

a

d <- dist(a,"binary") ; d # can you understand it ?

s <- 1-d ; s #s is the SIMILARITY matrix

h <- hclust("compact",sim =s) # operating on the similarity matrix

plclust(h) # does this make sense ?

h <- hclust(d,"compact") ; plclust(h) # now on the dissimilarity matrix

# essentially the same as the previous plot ?

# Now for fun with labels.

plclust(h,labels =student.lab)

ls() # to show you all your S-Plus objects

# use rm() to remove unnecessary clutter

ls() # shows you what you’ve done.

Exercise: do a cluster analysis on the 16 students using the FIRST 4 questions only.
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8. Decision trees.

You are a trainee astronaut, learning how you should decide whether or not to use your autolander.
You have a “training set” of 256 lines of data, telling you whether or not the autolander was used
for all combinations of 6 factors(eg visibility yes/no) in the past. Here we show you how to use
Splus to grow a “decision tree” to guide your actions in the future.

library(MASS)

help(shuttle)

shuttle

attach(shuttle)

summary(shuttle)

table(use,vis)

table(use,vis,error) # and so on,for some useful summaries.

shuttle.tree <- tree(use~.,shuttle) # this grows a tree

# making use of all 6 factors,if necessary.

summary(shuttle.tree)

shuttle.tree # what is this telling you ?

# Do we make use of "vis" in our decision ?

# Do we make use of "wind" ?

plot(shuttle.tree)

text(shuttle.tree,srt =90)

Now try growing a tree using only the first 4 factors,and compare your results with the first tree
obtained. For an interesting comparison with R, look at the function rpart() thus

library(rpart) # rpart means ‘recursive partitioning’

tree.rp <- rpart(use ~. , shuttle) ; tree.rp

plot(tree.rp,compress =T)

text(tree.rp,use.n =T)

post.rpart(shuttle.rp) # for a nice postscript graph

Note added June 2007. Now that I have discovered the new (ie 2007) book ‘Data analysis and
graphics using R: an example-based approach’ by Maindonald and Braun, I realise that I should
have also included the use of the cross-validation error rate to construct the best tree with
rpart().
A very simple use of the tree() function is given in Worksheet 15, below, for the Cushing’s dataset.
Here are the first 50 rows of the data-set from the Venables and Ripley library(MASS), originally
from D.Michie (1989).

stability error sign wind magn vis use

1 xstab LX pp head Light no auto

2 xstab LX pp head Medium no auto

3 xstab LX pp head Strong no auto

4 xstab LX pp tail Light no auto

5 xstab LX pp tail Medium no auto

6 xstab LX pp tail Strong no auto

7 xstab LX nn head Light no auto

8 xstab LX nn head Medium no auto

9 xstab LX nn head Strong no auto

10 xstab LX nn tail Light no auto

11 xstab LX nn tail Medium no auto

12 xstab LX nn tail Strong no auto

13 xstab XL pp head Light no auto

14 xstab XL pp head Medium no auto

15 xstab XL pp head Strong no auto
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16 xstab XL pp tail Light no auto

17 xstab XL pp tail Medium no auto

18 xstab XL pp tail Strong no auto

19 xstab XL nn head Light no auto

20 xstab XL nn head Medium no auto

21 xstab XL nn head Strong no auto

22 xstab XL nn tail Light no auto

23 xstab XL nn tail Medium no auto

24 xstab XL nn tail Strong no auto

25 xstab MM pp head Light no auto

26 xstab MM pp head Medium no auto

27 xstab MM pp head Strong no auto

28 xstab MM pp tail Light no auto

29 xstab MM pp tail Medium no auto

30 xstab MM pp tail Strong no auto

31 xstab MM nn head Light no auto

32 xstab MM nn head Medium no auto

33 xstab MM nn head Strong no auto

34 xstab MM nn tail Light no auto

35 xstab MM nn tail Medium no auto

36 xstab MM nn tail Strong no auto

37 xstab SS pp head Light no auto

38 xstab SS pp head Medium no auto

39 xstab SS pp head Strong no auto

40 xstab SS pp tail Light no auto

41 xstab SS pp tail Medium no auto

42 xstab SS pp tail Strong no auto

43 xstab SS nn head Light no auto

44 xstab SS nn head Medium no auto

45 xstab SS nn head Strong no auto

46 xstab SS nn tail Light no auto

47 xstab SS nn tail Medium no auto

stability error sign wind magn vis use

48 xstab SS nn tail Strong no auto

49 stab LX pp head Light no auto

50 stab LX pp head Medium no auto
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9. Introduction to Time-Series modelling with Splus
Diggle, 1990, p169, gives this excellent flowchart for guidance in arima modelling

Begin

|_________________________________

| |

Does a tsplot of the data|___NO - Difference the

appear to be stationary? | data

| |

yes |

| |

Does the correlogram of |___NO___|

the data decay to zero?

|

yes

|

Is there a sharp cutoff |___NO_Is there a sharp cutoff|_NO__

in the correlogram? | in partial corr’gram | ARMA

| |

yes yes

| |

MA AR

We follow the approach in Venables and Ripley, and also use a PMEA data set.

library(MASS)

deaths # total UK monthly deaths from lung diseases for 1974-9

tsplot(deaths)

sablplot(sabl(deaths),title= "deaths") # seasonal components

acf(deaths)

acf(deaths,type= "partial")

spectrum(deaths)

spectrum(deaths,spans = 3) # smoothed spectrum

spectrum(deaths,spans= c(3,3))

spectrum(deaths,"ar")

Now another dataset shown in Diggle, p42, on luteinising hormone.

lh ; tsplot(lh)

acf(lh) # looks like AR(1) or ARMA(1,1)

acf(lh,type= "partial")

spectrum(lh,"ar")

ar1 <- ar(lh,,1)

ar2 <- ar(lh) #allowed free rein,chooses AR(3)

arima1 <- arima.mle(lh,model= list(order=c(1,0,0)))

# full MLE fit

2*arima1$loglik # deviance - constant

arima.diag(arima1) # diagnostics plot

arima3 <- arima.mle(lh,model=list(order= c(3,0,0)))

2*arima3$loglik # not much better than AR(1)

arima.diag(arima3)

arima11 <- arima.mle(lh,model=list(order= c(1,0,1)))

2*arima11$loglik #no better than AR(1)

arima.diag(arima11)

# Now use arima1 to forecast 12 steps
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lh.fore <- arima.forecast(lh,n =12,model =arima1$model)

x <- lh.fore$mean ; sd <- lh.fore$std.err

tsplot(lh,x,x+2*sd,x-2*sd)

Now some popmusic data from ‘The Independent’, February 1994. First copy my files
Splus/popmusic and Splus/popdata

source("popmusic") # (this assumes you have BOTH files)

tsplot(ind)

acf(ind)

lind <- log(ind+1) ;tsplot(lind) # and so on

Can you model the log-index? What is your prediction for 1994 ? Here is the popmusic file.
Data from ‘The Independent’, Wed Feb 23, 1994 “An Index of British penetration of the US singles
market”. The scoring system is :
give 30 points for the year’s best-selling single, and go on down the scale to 1 point for the single
that came 30th in that year’s sale.
Thus the figure for 1993 is 28 pts for “UB40”(the 3rd best-seller)
+ 4 pts for “The Proclaimers”(27th)

pdata<- read.table("popdata", header=T); attach(pdata)

plot(year,ind)

# Here is the ‘‘popdata" file.

year ind

1960 0

1961 0

1962 14

1963 0

1964 179

1965 219

1966 131

1967 102

1968 48

1969 71

1970 61

1971 76

1972 38

1973 78

1974 36

1975 132

1976 105

1977 102

1978 166

1979 76

1980 142

1981 65

1982 36

1983 137

1984 111

1985 201

1986 70

1987 25

1988 170

1989 31

1990 38

1991 40
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1992 48

1993 32
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10. Survival Data Analysis.

We follow closely Venables and Ripley (1994) Chapter 11.
Two data-sets are used:
i)uncensored data on survival times for leukaemia (see Cox and Oakes, 1984, p9)
ii) The 2-sample Gehan data on remission times for leukaemia(Cox and Oakes, 1984, p7)

library(MASS)

attach(leuk) ; leuk

plot(log(time)~ag + log(wbc)) #log() is variance-stabilising here.

plot(survfit(Surv(time)~ag), lty= c(2,3))

These graphs suggest that
survival is BETTER with ag present than with ag absent, and
survival DECREASES as log(wbc) INCREASES.

legend(80,0.8,c("ag absent","ag present"),lty= c(2,3))

options(contrasts<-c("contr.treatment","contr.poly"))

leuk.glm <- glm(time ~ ag* log(wbc),Gamma(log))

Here we fit a gamma model, using the log-link. Check that you can write down the likelihood.

summary(leuk.glm,dispersion= 1)# sets df of gamma as 1. Thus, we have neg. exponential.

anova(leuk.glm) # what is this telling us ?

# We drop the interaction term

leuk.glm <- update(leuk.glm, ~ . - ag:log(wbc))

summary(leuk.glm,dispersion= 1)

leuk.glmi <- glm(time ~ag*log(wbc),Gamma(inverse))

Does using the canonical link function improve the fit?

summary(leuk.glmi,dispersion= 1)

Again, we are forcing a neg exponential fit. Now we use survreg(), for exponential, Weibull and
log-logistic regression analyses.

survreg(Surv(time) ~ag*log(wbc),dist= "exponential")

summary(survreg(Surv(time)~ag + log(wbc),dist= "exp"))

summary(survreg(Surv(time)~ag+log(wbc)))

summary(survreg(Surv(time)~ag+log(wbc),dist= "log"))

Now we will use a semi-parametric model, the Cox proportional hazards.

leuk.cox <- coxph(Surv(time)~ ag + log(wbc))

summary(leuk.cox)

detach("leuk") #to tidy our space.

Next we find the product-limit estimators of survival curves.

attach(gehan); gehan

plot.factor(gehan)

plot(log(time) ~ pair) # variance- stabilising transformation again.

Now we will estimate the survivor function, using Greenwood’s formula for standard errors. Some
of what is written below is now out of date, since your version of Splus may have survfit() rather
than surv.fit(). See Venables and Ripley, 1999, p371, for a method which replaces surv.fit() by
survfit().
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wt1 <- ifelse(treat=="control",1,NA) # to pick out control group

wt2 <- ifelse(treat=="6-MP",1,NA) # to pick out treatment group

wt1 ; wt2 # to check

fit1 <- surv.fit(time,cens,wt= wt1,type= "kaplan-meier",error= "greenwood")

fit1

fit2 <- surv.fit(time,cens,wt= wt2,type= "kaplan-meier",error= "greenwood")

fit2

surv.plot(time,cens,treat,lty= c(3,1),yscale= 100,

xlab= "time of remission",ylab= "% survival")

legend(25,90,c("control","6-MP"),lty= c(1,3))

# or,a diy version,which has error-bars

plot(stepfun(fit1$time,fit1$surv),type= ’l’,ylim= c(0,1),

xlab= "time of remission",ylab= "survival")

t1 <- fit1$time ; s1 <- fit1$surv ; std1 <- fit1$std.err

t2 <- fit2$time ; s2 <- fit2$surv ; std2 <- fit2$std.err

lines(stepfun(t1,exp(log(s1) + 1.96*std1)),lty= 2)

lines(stepfun(t1,exp(log(s1) - 1.96*std1)),lty= 2)

lines(stepfun(t2,s2),lty= 3)

lines(stepfun(t2,exp(log(s2) + 1.96*std2)),lty= 2)

lines(stepfun(t2,exp(log(s2) - 1.96*std2)),lty= 2)

legend(1,0.2,c("control","6-MP","95% conf.int."),lty= c(1,3,2))

# or, use the packet-recipe

gehan.surv <- survfit(Surv(time, cens) ~ treat,conf.type= "log-log")

summary(gehan.surv)

plot(gehan.surv,conf.int= T,lty=c(3,2),log= T,

xlab= "time of remission(weeks)",ylab= "survival")

survreg(Surv(time,cens) ~ factor(pair)+treat,dist= "exp")

summary(survreg(Surv(time,cens)~treat,dist= "exp")

summary(survreg(Surv(time,cens)~treat))

help(surv.fit)

This enables us to find out about other options.
Now, to test for a difference between the 2 groups:

survdiff(Surv(time,cens) ~ treat, rho=0) # This is the log-rank test

survdiff( Surv(time,cens) ~ treat,rho=1) # almost Gehan-Wilcoxon test

# see Cox & Oakes p 124
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11. Under the heading
“How long British monarchs have lived”,
the Independent on Sunday (26/11/95) gave the Table below. This gives, for each of 40 monarchs,
the date of death, the lifetime, and a 0 or 1 according to whether the death was natural or not.
(The list omits Lady Jane Grey, who was executed aged 16 in 1553, after 2 weeks on the throne.
Mary, wife of William of Orange, is listed separately as she was Queen in her own right.)

death length natural

WilliamI 1087 60 0

WilliamII 1100 40 1

HenryI 1135 67 0

Stephen 1154 53 0

HenryII 1189 56 0

RichardI 1199 42 1

John 1216 48 0

HenryIII 1272 65 0

EdwardI 1307 68 0

EdwardII 1327 43 1

EdwardIII 1377 64 0

RichardII 1399 33 1

HenryIV 1413 47 0

HenryV 1422 34 0

HenryVI 1471 49 1

EdwardIV 1483 40 0

EdwardV 1483 12 1

RichardIII 1485 32 1

HenryVII 1509 52 0

HenryVIII 1547 55 0

EdwardVI 1553 15 0

Mary 1558 42 0

ElizabethI 1603 69 0

JamesI 1625 58 0

CharlesI 1649 48 1

CharlesII 1685 54 0

JamesII 1701 67 0

WilliamIII 1702 51 1

Mary(II) 1694 32 0

Anne 1714 49 0

GeorgeI 1727 67 0

GeorgeII 1760 76 0

GeorgeIII 1820 81 0

GeorgeIV 1830 67 0

WilliamIV 1837 71 0

Victoria 1901 81 0

EdwardVII 1910 68 0

GeorgeV 1936 70 0

EdwardVIII 1972 77 0

GeorgeVI 1952 56 0

We use R to plot the Survivor function for the natural lifetimes (so that, for example, William II
counts as a CENSORED observation.)

library(survival}

monarchy.data = read.table("monarchy.data", header=T)

attach(monarchy.data) ; cens= 1-natural
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Surv(length, cens)

fit = survfit(Surv(length, cens)~ 1) ; fit

summary(fit)

plot(fit) ; abline(.5,0)

and here is the resultant survivor function. Counting forward from age 0 years, the first observed
natural death was for Edward VI, who died aged 15 years: there are only 39 monarchs at risk at
this age as (poor little) Edward V has been ‘censored’ at 12 years old.

time n.risk n.event survival std.err lower 95% CI upper 95% CI

15 39 1 0.9744 0.0253 0.9260 1.000

32 38 1 0.9487 0.0353 0.8820 1.000

34 35 1 0.9216 0.0435 0.8402 1.000

40 34 1 0.8945 0.0499 0.8018 0.998

42 32 1 0.8666 0.0557 0.7640 0.983

47 29 1 0.8367 0.0612 0.7249 0.966

48 28 1 0.8068 0.0659 0.6874 0.947

49 26 1 0.7758 0.0703 0.6495 0.927

52 23 1 0.7420 0.0749 0.6088 0.904

53 22 1 0.7083 0.0787 0.5696 0.881

54 21 1 0.6746 0.0819 0.5317 0.856

55 20 1 0.6408 0.0845 0.4950 0.830

56 19 2 0.5734 0.0880 0.4244 0.775

58 17 1 0.5397 0.0891 0.3905 0.746

60 16 1 0.5059 0.0897 0.3575 0.716

64 15 1 0.4722 0.0898 0.3253 0.686

65 14 1 0.4385 0.0895 0.2939 0.654

67 13 4 0.3036 0.0836 0.1769 0.521

68 9 2 0.2361 0.0774 0.1241 0.449

69 7 1 0.2024 0.0734 0.0994 0.412

70 6 1 0.1686 0.0684 0.0761 0.374

71 5 1 0.1349 0.0625 0.0544 0.335

76 4 1 0.1012 0.0552 0.0347 0.295

77 3 1 0.0675 0.0460 0.0177 0.257

81 2 2 0.0000 NA NA NA

The resulting plot is given in Figure 16.
Now compute the Kaplan-Meier estimates of the survivor function for the male monarchs and

for the female monarchs, and try fitting parametric distributions to these. (Note, there are just 5
queens in the list.)
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Figure 16: Survivor function for natural lifetime of English monarchs

12. Classical Metric Multidimensional Scaling, and Chernoff’s faces.

a <- read.table("Dip97",header= T) # reads in the responses from 16 students

student.lab <- row.names(a)

a <- as.matrix(a)

d <- dist(a,metric= "binary") # This sets up the interstudent "distances"

new <- cmdscale(d,k= 2,eig= T) ; new

This finds the best 2-dimensional representation of the 16 points.

coord1 <- new$points[,1] # the first column

coord2 <- new$points[,2] # the second

par(pty<-"s") # sets up a square plot

r <- range(new$points)

plot(coord1,coord2,type= "n")

text(coord1,coord2,seq(along= coord1)).

This labels the points by integers. Alternatively, we could use the default setting of a 2-dimensional
representation, thus:

new <- cmdscale(d)

plot(new,type= "n")

text(new,labels= student.lab) # this time put the NAMES on the plot

faces(a, labels= student.lab)

How to insult your students!
Chernoff’s faces (available in R via the package aplpack) represent up to 15 variables by features
of cartoon faces as you will see in Figure 17.
The corresponding data set, ‘Dip97’, is given below.

eggs meat coffee beer UKres Cantab Female Sports Driver Left.h
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Figure 17: Chernoff’s faces for the Diploma 1996-7 class
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Anna 1 1 1 0 0 0 1 1 1 0

Rachel 1 1 1 1 1 1 1 1 1 0

Gillian 1 1 1 1 1 0 1 0 1 0

Graham 1 1 1 1 1 0 0 1 1 0

Pierre 1 1 1 1 0 0 0 1 1 0

Franc. 1 1 1 0 0 0 1 1 1 0

Peter 1 1 1 1 1 0 0 0 1 0

Ian 1 1 1 1 0 0 0 1 1 0

Jerome 0 1 1 1 0 0 0 0 1 0

Ant. 1 1 1 1 0 0 0 0 1 0

PekWai 1 1 1 0 0 0 1 0 1 0

Sean 1 1 1 0 0 0 0 0 1 0

Christ. 1 1 1 0 0 0 1 0 1 0

Piers 1 1 1 1 1 1 0 1 1 0

Keith 1 1 0 1 1 1 0 1 1 1

John 1 1 1 0 0 0 0 1 1 1

And finally, new for 2002, the following data MPhil/Part III, applied multivariate analysis, Feb
2002.

...........................................................................

eggs meat coffee beer UKres Cantab Fem sports driver Left-h specs

Josh y y y y y n n y n n y

TjunKiat y y y n n n n y y n y

Flora y y y y y n y y y n y

ChauLoong y y y n n n n y n n n

Eleanor y y y y y n y y y n n

Teresa y y y n n n y y y n n

Jim y y y y y y n y y y n

Mama y y y y n n n y y n n

Chao y y y y n n n y y n y

Qi y y y y y n n y n n y

LeeLee y y n y n n y y y n y

Karthi y y y n n n n n n n y

David y y y y y n n y y n y

Neeraj y y n n y n n n n n y

Cosme y y n n n n n y y n y

Arnaud y y y y n n n y y n y

Jochen y y y n n y n y y n y

Sophia y y y n y y y y y n y

Stephane y y n n n n n y y n n

JimmyL y y y y n n n y y n y

Note, the first 2 columns turn out to be unhelpful, so you may prefer to omit them before trying,
eg

dist() for use with hclust() or cmdscale()
The above data set is of course based on rather trivial questions.

By way of complete contrast, here is a data set from The Independent, Feb 13, 2002. on ‘Countries
with poor human rights records where firms with British links do business’. It occurs under the
headline

CORPORATE RISK: COUNTRIES WITH A BRITISH CONNECTION.

1 2 3 4 5 6 7 8 9 10 11 12 13 14

SaudiArabia 1 0 0 0 0 1 0 1 0 0 1 1 0 1
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Turkey 1 0 1 0 1 1 0 0 0 1 0 1 0 1

Russia 1 0 1 0 1 1 1 0 0 0 0 1 0 1

China 1 1 1 0 1 1 1 0 0 0 0 1 0 1

Philippines 1 1 1 0 0 0 0 0 1 0 0 1 1 0

Indonesia 1 1 1 0 0 1 1 1 0 0 0 1 0 0

India 1 0 1 0 1 0 0 1 1 0 1 1 0 0

Nigeria 0 0 1 0 0 0 1 0 0 0 0 1 1 0

Brazil 1 0 1 1 1 0 1 0 0 1 0 1 0 0

Colombia 1 1 1 1 1 0 0 0 0 1 0 1 0 0

Mexico 0 1 1 0 0 1 0 0 0 0 0 1 0 1

Key to the questions (1 for yes, 0 for no)
Violation types occurring in the countries listed

1 Torture
2 ‘Disappearance’
3 Extra-judicial killing
4 Hostage taking
5 Harassment of human rights defenders
6 Denial of freedom of assembly and association
7 Forced labour
8 Bonded labour
9 Bonded child labour
10 Forcible relocation
11 Systematic denial of women’s rights
12 Arbitrary arrest and detention
13 Forced child labour
14 Denial of freedom of expression

Note that the total number of 1’s in each row ranges from 4, for Nigeria, to 8, for China.
Figure 18 shows my 2-dimensional plot of the 11 countries, using the

method ="binary"

option in computing the between-countries distance matrix. (Of course, this treats the 14 different
types of ‘violation’ as equally serious, which is not necessarily the correct thing to do.) In order
to interpret the axes of this graph, I suggest the following:

a <- a[,-12] # to remove the 12th column from the matrix (it’s all 1’s)

b <- cbind(new, a) # new being the first 2 cmd co-ordinates

round(cor(b),2) # so that you can see, for example, which columns of a

are most closely correlated with new[,1]

You might like to compare the results of cmdscale with those of hierarchical clustering, as follows.

a = read.table("human.rights") # to read in the data

a = data.matrix(a)

d = dist(a, method="binary")

h = hclust(d, method="complete")

# "complete" in R is same as "compact" in Splus

plclust(h)

The resulting graph is shown as Figure 19.
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Figure 18: Countries with a British connection: human rights abuses
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Figure 19: Hierarchical clustering for the countries data



P.M.E.Altham, University of Cambridge 51

And finally, a more cheerful dataset: ‘Why workers in Britain are still chained to their desks’, from
The Independent, 30 April 2002. Here is the Table of ‘How working conditions compare throughout
Europe’ (which I have edited slightly).

Au Be De Fi Fr Ge Gr Ir It Lu Ne Po Sp Sw UK

statw 40 39 NA 40 35 48 48 48 40 40 45 40 40 40 48

Prod 90 128 99 99 113 102 74 94 113 199 119 63 81 95 92

AnnP 13 10 11 10 11 10 12 9 12 10 8 14 14 13 8

AnnL 25 20 25 25 25 20 22 20 NA 20 NA 22 20 25 20

Key: the countries are
Austria, Belgium, Denmark, Finland, France, Germany, Greece, Ireland, Italy, Netherlands, Por-
tugal, Spain, Sweden and UK.
The rows are
statw= Statutory working hours per week
Prod = Productivity (GDP per hour) index: EU¡-100 (in 1999)
AnnP= Annual Public holidays
AnnL = Annual leave, days.



P.M.E.Altham, University of Cambridge 52

13. Analysis of a Repeated Measures design.

You see below the data from p28 of M.J.Crowder and D.J.Hand (1990) ‘Analysis of Repeated
Measures’.
To quote from Crowder and Hand, ‘The effect of a vitamin E diet supplement on the growth of
guinea pigs was investigated as follows. For each animal the body-weight was recorded at the ends
of weeks 1,3,4,5,6 and 7. All animals are given a growth-inhibiting substance during week 1, and
the vitamin E therapy was started at the beginning of week 5. Three groups of animals, numbering
five in each, received respectively zero, low and high doses of vitamin E.’

The body weights (in grams) are given in the table below. The rows correspond to Animals 1, . . . 15,
respectively, and the columns to the weeks 1, 3, 4, 5, 6, 7. The first 5 rows are Group 1, the next 5
are Group 2, and the final 5 are Group 3. We reconstruct the analysis given by Crowder and Hand
on p34, following Venables and Ripley (1997) Chapter 10.
This model allows for three sources of random variation: one is that between the 15 animals, one
is the random interaction effect animals × occasions and and finally one is the ‘error’ variation.
The model to be fitted is

xij = µij + αij + +εij

for i = 1, · · · , 15, j = 1, · · · , 6, where we assume that

αij = αI
i + αIO

ij

where αI
i , α

IO
ij , εij are independent, with variances σ2

I , σ
2
IO , σ

2 respectively. (The first 2 of these 3
terms are known as variance components.)
We assume that

µij = µ
(g)
j for iε Group g.

x <- scan()

455 460 510 504 436 466

467 565 610 596 542 587

445 530 580 597 582 619

485 542 594 583 611 612

480 500 550 528 562 576

514 560 565 524 552 597

440 480 536 484 567 569

495 570 569 585 576 677

520 590 610 637 671 702

503 555 591 605 649 675

496 560 622 622 632 670

498 540 589 557 568 609

478 510 568 555 576 605

545 565 580 601 633 649

472 498 540 524 532 583

We <- c(1,3,4,5,6,7)

week <- We

First we plot the 15 ‘timetracks’, on 3 separate plots, one for each of the 3 Groups. These are
shown as Figures 20, 21 and 22 respectively.
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Figure 20: Time tracks showing growths for Group 1 guinea pigs
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Figure 21: Time tracks showing growths for Group 2 guinea pigs
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Figure 22: Time tracks showing growths for Group 3 guinea pigs

a <- matrix(x,nrow= 15,ncol= 6,byrow= T)

b<- t(a)

par(mfrow=c(3,1))

matplot(week,b[,1:5],type= "l", ylim= c(400,750))

matplot(week,b[,6:10],type= "l", ylim= c(400,750))

matplot(week,b[,11:15],type= "l", ylim= c(400,750))

library(nlme) # for use in R

Gr <- 1:3 ; An <- 1:15

y <- expand.grid(We,An)

Week <- y[,1] ; Animal <- y[,2]

Group <- gl(3, 30, length=30, labels=c("zero", "low", "high")

Week <- factor(Week); Animal <- factor(Animal)

first.aov <- aov(x~Week*Group + Error(Animal))

summary(first.aov)

This shows that the Group*Week interaction is non-significant. So next we try

sec.aov <- aov(x~ Week + Group + Error(Animal))

summary(sec.aov)

This results in the following output, where you can see that the original 89 df have been partitioned
into 89 = (2+12)+(5+70), giving us the ‘between Animals’ comparisons and the ‘Within Animals’
comparisons, respectively.

Error: Animal

Df Sum Sq Mean Sq F value Pr(>F)

Group 2 18548 9274 1.0555 0.3782

Residuals 12 105434 8786

Error: Within

Df Sum Sq Mean Sq F value Pr(>F)

Week 5 142555 28511 47.164 < 2.2e-16 ***
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Residuals 70 42315 605

sec.lme <- lme(x ~ Week + Group, random= ~1 | Animal)

summary(sec.lme) # for comparison

> summary(sec.lme)

Linear mixed-effects model fit by REML

Data: NULL

AIC BIC logLik

831.9379 856.0051 -405.9689

Random effects:

Formula: ~1 | Animal

(Intercept) Residual

StdDev: 36.92713 24.58668

Fixed effects: x ~ Week + Group

Value Std.Error DF t-value p-value

(Intercept) 466.2333 18.068104 70 25.804220 0.0000

Week3 48.8000 8.977786 70 5.435639 0.0000

Week4 88.0667 8.977786 70 9.809397 0.0000

Week5 80.6000 8.977786 70 8.977715 0.0000

Week6 93.0667 8.977786 70 10.366328 0.0000

Week7 126.8667 8.977786 70 14.131176 0.0000

Grouplow 33.1333 24.202181 12 1.369023 0.1961

Grouphigh 26.7667 24.202181 12 1.105961 0.2904

Correlation:

.....................................................

Standardized Within-Group Residuals:

Min Q1 Med Q3 Max

-2.62053931 -0.51705480 0.01798091 0.62523764 2.09203976

Number of Observations: 90

Number of Groups: 15

Note: I have used ‘Groups’ to mean treatments zero, low, high here. This was not such a good
choice of name, as lme() uses ‘Groups’ to mean Animals in this context.
Compare this also with

summary(lm(x ~ Week + Group)) # which assumes that all observations are independent

Venables and Ripley show you how to look at residuals.
The current example follows the analysis given by Hand and Everitt. However ‘Week’ is definitely
ordered in time, and so there may be a more suitable error structure than the symmetric one given
here. See Venables and Ripley (1997) p312 for examples of other error structures.
Note that the function

glmmPQL()

available via library(MASS) provides a very general method of dealing with ‘random effects’ ver-
sions of generalized linear models. But beware: Hayley Jones, in her MPhil Applied Project, found
that SPlus6 and R give different solutions when using this function on identical datasets.
(The problem seems to be connected with the fact that we are maximising a multi-modal log-
likelihood function, and R may go off in the wrong direction.) For this reason we preferred to
work with the SPlus version of the function. In either case, understanding all the output from
glmmPQL() is tricky.
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14. Fitting a beta-binomial distribution to the hospitals data

I checked the computations in Splus7 in July 2008.
E.C.Marshall and D.J.Spiegelhalter (1998) ‘Reliability of league tables of in vitro fertilisation clin-
ics: retrospective analysis of live birth rates’, British Medical Journal, 316, 1701-4 analyse the data
from which the Table below has been constructed. To quote from E.C.Marshall’s unpublished PhD
thesis, which also includes these data, ‘In July 1996 the Human Fertilisation and Embryology Au-
thority reported on 25730 in vitro fertilisation treatments carried out in 52 clinics over the period
from 1 April 1994 to 31 March 1995. An overall adjusted live birth rate of 14.5 % was found.’
In the Table below, r is the number of live births, and n the number of fertilisations. (r was
computed from n and the observed percentage p, both of which were given in Marshall’s PhD
thesis.)

r n

Withington 7 147

ManchesterFS 41 506

Fazakerley 20 240

Ninewells 42 501

Hull 33 390

King’sColl 125 1453

BMIChiltern 13 149

Cromwell 39 427

Aberdeen 32 327

Walsgrave 45 458

Hartlepool 9 85

BUPALe’ster 12 110

UCH 41 366

WirralFC 17 141

GlasgowRI 105 876

SheffieldFC 80 661

Le’sterRI 14 114

LondonFC 100 786

StMary’s 82 627

NewhamGH 9 68

EdinburghACU 59 447

BMIPortland 21 152

Washington 42 307

RoyalVicI 47 342

BourneHallC 185 1315

UHWales 24 168

BridgeFC 81 568

EsperanceH 31 212

WessexFS 60 404

ChurchillC 78 519

MidlandFS 120 787

UnivBristol 119 773

WolfsonFC 160 1004

RoyalMasonic 133 839

Northampton 36 223

NStaffs 19 116

LondonWomens 105 643

Guys&StThom 84 496

BMIPark 111 640

BUPARoding 38 211
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HollyHoFU 49 262

BMIPriory 46 241

S.Cleveland 20 104

LeedsGenI 186 946

BMIChelsfield 42 208

OxfordIVF 128 603

SouthmeadGen 18 82

Lister 244 1104

RMHBelfast 122 548

StJames’s 121 537

Birmingham 60 267

NURTURE 204 861

First we will fit the binomial with constant probability p to these data, namely

ri ∼ independent Bi(ni, p), 1 ≤ i ≤ 52.

This is easily achieved by

hdata <- read.table("hospitals.data", header= T)

attach(hdata)

first.glm <- glm(r/n ~ 1, binomial, weights= n)

summary(first.glm)

which shows a deviance of 390.76, with df = 51. So we have substantial overdispersion with
respect to the model of constant binomial parameter p. We will compute the binomial residuals,
for comparison later with the betabinomial residuals.

p <- first.glm$fitted.values ; q <- 1-p

res <- (r-n*p)/sqrt(n*p*q)

sum(res^2) # as a check

chisq.test(cbind(r,n-r)) # as another check

# sqrt(n) * resid(first.glm) would give us the deviance residuals instead

Our next step is to allow one extra parameter: we assume that

ri|pi ∼ Bi(ni, pi)

and assume further that pi has the beta distribution, parameters θ, φ.
This has the consequence that each ri then has a beta-binomial distribution, parameters ni, θ, φ.
Again assume that all the ri’s are independent.
We pause to derive the frequency function for the beta-binomial. Now

f(r|p) =

(

n

r

)

pr(1 − p)n−r, for r = 0, · · · , n

where p has density g(p) say, where

g(p) =
Γ(θ + φ)

Γ(θ)Γ(φ)
pθ−1(1 − p)φ−1, for 0 ≤ p ≤ 1.

Thus, integrating with respect to p, we find that
∫

f(r|p)g(p)dp =

(

n

r

)

Γ(θ + φ)

Γ(θ)Γ(φ)

Γ(θ + r)Γ(φ + n− r)

Γ(θ + φ+ n)
.

In the S-Plus commands below, we compute

−Σilogf(ri|θ, φ)

as MINUS the loglikelihood function, and then minimise it to find the maximum likelihood esti-
mates of θ, φ. ‘General optimization and maximum likelihood estimation’ is given as Chapter 9 in
Venables and Ripley (1997).
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lbetabin <- function(p)

{

th <- p[1]

phi <- p[2]

sum( - lgamma(th + r) - lgamma(phi + n - r) + lgamma(th + phi + n) +

lgamma(th) + lgamma(phi) - lgamma(th + phi))

}

p <- c(.15,.85)

These are our initial estimates of θ, φ, taken from the binomial fit, and setting θ+φ = 1. One way
to proceed is as follows

fit.first <- nlmin(lbetabin,p,print.level= 1) # this does not quite converge, but

fit.first$converged # shows that we have not yet reached convergence, but

fit.first$x # shows that we have

# estimates theta =10.73 , phi=63.07. So we use these as starting values, thus

p <- fit.first$x

fit.next <- nlmin(lbetabin,p,print.level= -1) # now quickly converges, giving

# the following estimates

fit.next$x

10.89 63.04 # for theta, phi

Now we will try a different minimisation function.

p <- c(.15,.85) # the same starting values as before

fit.betabin <- nlminb(start = p, objective = lbetabin, lower = c(0, 0))

# which gives convergence, and

fit.betabin$parameters

[1] 10.89 63.06 # and we need the corresponding se’s, so

library(MASS)

vcov.nlminb(fit.betabin) # gives us the approximate covariance matrix for these

parameter estimates

It is interesting that we find

θ̂ = 10.89(se = 2.51), φ̂ = 63.06(se = 14.85)

which corresponds to the beta-density for p, shown in Figure 23, which is quite sharply peaked.
You can do this plot for yourself by

th <- 10.89; phi <- 63.06

p <- (1:100)/100

f <- dbeta(p,th,phi)

plot(p,f,type= "l")

We can use the parameter estimates to compute the correct estimated variance for ri, and hence
compute a χ2 goodness of fit statistic for the model.

th <- 10.89; phi <- 63.06; pi <- th/(th + phi)

betabin.resid <- (r - n*pi)/sqrt( n*pi *(1-pi)*(1+ (n-1)/(th + phi+1)))

plot(res,betabin.resid)

betabin.chi2 <- sum(betabin.resid^2)

This finds the χ2 statistic as 50.35, with 50 df, showing that the inclusion of just 1 extra parameter
gives a model that satisfactorily accounts for the ‘over-dispersion’ relative to the ordinary binomial.
Here are the ordered binomial residuals.
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Figure 23: The beta density with parameters 10.89, 63.06

round(sort(res),2)

# This shows us ‘best’ and ‘worst’ on crude 1-parameter binomial model

King’sColl ManchesterFS Ninewells Hull Withington Cromwell Walsgrave

-6.85 -4.36 -4.16 -3.63 -3.48 -3.4 -3.11

Fazakerley Aberdeen GlasgowRI BMIChiltern SheffieldFC UCH LondonFC StMary’s

-2.9 -2.65 -2.51 -2.15 -2.1 -2.04 -1.8 -1.36

BUPALe’ster Hartlepool EdinburghACU WirralFC BourneHallC Le’sterRI RoyalVicI

-1.21 -1.14 -1.08 -0.98 -0.97 -0.82 -0.66

Washington BridgeFC BMIPortland NewhamGH UHWales EsperanceH WessexFS

-0.66 -0.51 -0.42 -0.41 -0.27 -0.16 -0.09

ChurchillC MidlandFS UnivBristol NStaffs Northampton RoyalMasonic WolfsonFC

0.01 0.18 0.29 0.41 0.47 0.67 0.81

LondonWomens Guys&StThom S.Cleveland BUPARoding BMIPark HollyHoFU

0.93 1.19 1.2 1.22 1.65 1.67

SouthmeadGen BMIPriory BMIChelsfield Birmingham LeedsGenI OxfordIVF

1.76 1.77 2.09 3.41 4 4.27

RMHBelfast StJames’s Lister NURTURE

4.75 4.87 6.59 7.12

and here are the ordered beta-binomial residuals, which can also be compared to the standard
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normal

round(sort(betabin.resid),2) # for betabinomial residuals

Withington ManchesterFS King’sColl Ninewells Hull Fazakerley Cromwell

-1.99 -1.51 -1.46 -1.45 -1.4 -1.37 -1.26

BMIChiltern Walsgrave Aberdeen UCH Hartlepool BUPALe’ster GlasgowRI

-1.2 -1.11 -1.09 -0.79 -0.74 -0.72 -0.64

SheffieldFC WirralFC LondonFC Le’sterRI StMary’s EdinburghACU NewhamGH

-0.61 -0.53 -0.47 -0.47 -0.38 -0.35 -0.25

Washington RoyalVicI BMIPortland BourneHallC BridgeFC UHWales EsperanceH

-0.23 -0.22 -0.18 -0.16 -0.11 -0.09 -0.02

WessexFS ChurchillC MidlandFS UnivBristol RoyalMasonic WolfsonFC Northampton

0.03 0.07 0.12 0.16 0.26 0.29 0.3

NStaffs LondonWomens Guys&StThom BMIPark BUPARoding S.Cleveland HollyHoFU

0.32 0.37 0.5 0.61 0.69 0.84 0.86

BMIPriory BMIChelsfield LeedsGenI SouthmeadGen OxfordIVF Birmingham

0.93 1.15 1.16 1.28 1.5 1.67

RMHBelfast Lister StJames’s NURTURE

1.73 1.74 1.79 2.1

We could compare the 2 sets of residuals graphically via

par(mfrow= c(2,1))

qqnorm(res) ; qqline(res)

qqnorm(betabin.resid); qqline(betabin.resid)

This gives the graphs (note that the y-axes have different scales) shown in Figure 24.
Exercise:

The sample correlation matrix for θ̂, φ̂ suggests that we could find a much ‘better’ parametrisation,
in which the two parameters are closer to being orthogonal. Experiment with the parametrisation

π = θ/(θ + φ), ψ = θ + φ.

Afterword.
One of the objectives of Marshall and Spiegelhalter in looking at this table was to produce a
‘reliable’ ranking of the hospitals, since a ranking based only on the crude success rate can be quite
misleading. How do we address this question with the benefit of our beta-binomial model?
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Figure 24: residuals for the binomial and the betabinomial distributions

15. Multinomial logistic regression and classification.
Here we follow the example on Cushing’s syndrome, given in Venables and Ripley (1999) p350,
and we give some supplementary explanation.
The dataset is given below.

Tetrahydrocortisone Pregnanetriol Type

a1 3.1 11.70 a

a2 3.0 1.30 a

a3 1.9 0.10 a

a4 3.8 0.04 a

a5 4.1 1.10 a

a6 1.9 0.40 a

b1 8.3 1.00 b

b2 3.8 0.20 b

b3 3.9 0.60 b

b4 7.8 1.20 b

b5 9.1 0.60 b

b6 15.4 3.60 b

b7 7.7 1.60 b
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b8 6.5 0.40 b

b9 5.7 0.40 b

b10 13.6 1.60 b

c1 10.2 6.40 c

c2 9.2 7.90 c

c3 9.6 3.10 c

c4 53.8 2.50 c

c5 15.8 7.60 c

u1 5.1 0.40 u

u2 12.9 5.00 u

u3 13.0 0.80 u

u4 2.6 0.10 u

u5 30.0 0.10 u

u6 20.5 0.80 u

The data ‘are on diagnostic tests on patients with Cushing’s syndrome, a hypersensitive disorder
associated with over-secretion of cortisol by the adrenal gland. The dataset has three recognised
types of the syndrome represented as

a, b, c.

(These encode ‘adenoma’, ‘bilateral hyperplasia’, and ‘carcinoma’, and represent the underlying
cause of over-secretion. This can only be determined histopathologically.) The observations are
urinary excretion rates (mg/24h) of the steroid metabolites tetrahydrocortisone and pregnanetriol,
and are considered on a log scale.’
In the analysis given below, we do not use the last 6 rows of the data, for which the ‘Type’ was
unknown. We fit the following logistic model

log(P (b|x)/P (a|x)) = βT
2 x, log(P (c|x)/P (a|x)) = βT

3 x

with x as a 3-dimensional vector, having first element 1, and

P (a|x) + P (b|x) + P (c|x) = 1.

Thus, for example, if an object has covariate value x, we will predict it as b if βT
2 x > 0, & βT

2 x >
βT

3 x. We use library(nnet) to maximise the resulting multinomial log-likelihood.

library(MASS)

library(nnet)

Cushings # to view the data

tp <- factor(Cushings$Type[1:21])

Cf <- data.frame(tp<-tp, Tetra <- log(Cushings[1:21,1]),

Pregna <- log(Cushings[1:21,2]))

attach(Cf)

Tetra <- Tetra- mean(Tetra) ; Pregna <- Pregna -mean(Pregna)

this improves the parametrisation, making convergence of maximisation algorithm faster.

cush.multinom <- multinom(tp ~ Tetra + Pregna, Hess = T, maxit = 250)

cush.multinom

Call:

multinom(formula = tp ~ Tetra + Pregna, Hess = T, maxit = 250)

Coefficients:

(Intercept) Tetra Pregna

b 7.288130 14.39930 -0.244936
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c 2.385204 16.26469 3.358042

Residual Deviance: 12.30232

AIC: 24.30232

Note that the residual deviance is not an absolute measure of goodness of fit. In fact, the parameters
are estimated rather imprecisely, as we see from

summary(cush.multinom)

Call:

multinom(formula = tp ~ Tetra + Pregna, Hess = T, maxit = 250)

Coefficients:

(Intercept) Tetra Pregna

b 7.288130 14.39930 -0.244936

c 2.385204 16.26469 3.358042

Std. Errors:

(Intercept) Tetra Pregna

b 7.755119 13.73160 0.6692837

c 8.276217 13.38103 2.0996099

Residual Deviance: 12.30232

AIC: 24.30232

............................................

round(predict(cush.multinom, type= "probs"),3)

a b c

1 0.89 0.01 0.10

2 0.99 0.01 0.00

3 1.00 0.00 0.00

4 0.50 0.50 0.00

5 0.43 0.56 0.00

6 1.00 0.00 0.00

7 0.00 0.99 0.01

8 0.60 0.40 0.00

9 0.58 0.42 0.00

10 0.00 0.99 0.01

11 0.00 1.00 0.00

12 0.00 0.29 0.71

13 0.00 0.97 0.03

14 0.00 1.00 0.00

15 0.01 0.99 0.00

16 0.00 0.91 0.09

17 0.00 0.10 0.90

18 0.00 0.06 0.94

19 0.00 0.63 0.37

20 0.00 0.13 0.87

21 0.00 0.03 0.97

The above shows that there is considerable uncertainty about the predicted class for some of the
observations, eg numbers 8, 9.

predict(cush.multinom)

[1] a a a a b a b a a b b c b b b b c c b c c

table(predict(cush.multinom),tp)
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a b c

a 5 2 0

b 1 7 1

c 0 1 4

which shows that the ‘confusion matrix’ is not so bad as we might have expected: the total of the
offdiagonal terms is 5, so that the misclassification error rate with this method is 5/21, ie .24.
For this dataset, the logistic multinomial regression is actually less successful in prediction than
the simple classification tree, which we can easily obtain as follows.

> first.tree <- tree(tp ~ Tetra + Pregna) # use rpart() if in R

> first.tree

node), split, n, deviance, yval, (yprob)

* denotes terminal node

1) root 21 44.220 b ( 0.2857 0.4762 0.2381 )

2) Tetra<-0.323364 8 8.997 a ( 0.7500 0.2500 0.0000 ) *

3) Tetra>-0.323364 13 17.320 b ( 0.0000 0.6154 0.3846 )

6) Pregna<0.582761 7 0.000 b ( 0.0000 1.0000 0.0000 ) *

7) Pregna>0.582761 6 5.407 c ( 0.0000 0.1667 0.8333 ) *

> summary(first.tree)

Classification tree:

tree(formula = tp ~ Tetra + Pregna)

Number of terminal nodes: 3

Residual mean deviance: 0.8002 = 14.4 / 18

Misclassification error rate: 0.1429 = 3 / 21

What this is telling us is the following.
If you know neither Tetra nor Pregna, then you should predict all 21 cases to be ‘b’.
But, this is not a ‘terminal node’ (in fact it is the root node), and we can improve our prediction.
Our next step is
now look at Tetra, there are 8 cases for which Tetra < −0.323364, and all these cases should be
predicted as ‘a’,
The remaining 13 cases have Tetra > −0.323364, and if you are allowed no further information,
then predict all these cases as ‘b’.
But this also is not a ‘terminal’ node: you can improve things further by
looking at Pregna for these 13 cases.
The 7 cases for whom Pregna < 0.582761 should be predicted as ‘b’ (this will be perfectly correct,
and so must be a terminal node).
The remaining 6 cases for whom Pregna > 0.582761 should be predicted as ‘c’ (this will be not
quite correct, but is a terminal node nonetheless).
You can check that this classification tree is then incorrect in exactly 3 out of the 21 cases, so the
overall error rate is 0.1429.
I haven’t given you the story here about the deviance, but that’s something you can work out for
yourself. The root deviance is easily seen to be

44.220 = −2n
∑

pi log(pi)

where n = 21, and p1 = 6/21, p2 = 10/21, p3 = 5/21.

> post.tree(first.tree, file="tree.ps", pointsize=6) # for a ‘pretty’ plot

We show how the sample space is divided up by the following plot, given as Figure 25.

> plot(Tetra, Pregna, type="n") # blank plot so far
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> text(Tetra, Pregna,c("a","b","c")[tp]) # putting the points on with their labels

> abline(v= - 0.323364) # for the vertical dividing line

> abline(h= 0.582761) # for the horizontal dividing line
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Figure 25: How the classification tree for the Cushings data is constructed

New for August 2008: Olympic medals data

The Independent, 6 August 2008, presents the dataset below on ‘British medal hauls at the past
10 Olympics’.

Gold Silver Bronze

Athens2004 9 9 12

Sydney2000 11 10 7

Atlanta96 1 8 6

Barcelona92 5 3 12

Seoul88 5 10 9

LosAngeles84 5 11 21

Moscow80 5 7 9

Montreal76 3 5 5

Munich72 4 5 9

MexicoCity68 5 5 3

Suppose we wish to find whether the distribution of medals into Gold, Silver, Bronze has changed
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over these 10 Games. Specifically we will fit

log(p2i/p1i) = α2 + β2i, and log(p3i/p1i) = α3 + β3i,

for i = 10, 9, . . . , 1 (the first row corresponding to 2004) with p1i, p2i, p3i being the respective
probabilities that in a given year, a medal is Gold, Silver, Bronze. (p1i + p2i + p3i = 1, of course.)
If you apply the analysis below, you will see that β2 = 0, β3 = 0 and that for the British teams,
the probabilities of Gold, Silver, Bronze, respectively in any given year have remained more or less
constant at .24, .33, .42.
Suggestion for analysis:

library(MASS) ; library(nnet)

Olympics <- read.table("Olympics.data", header=T)

Year <- 10:1 ; attach(Olympics) ; Olmat <- cbind(Gold, Silver, Bronze)

chisq.test(Olmat)

Strangely, the chisq statistic is 19.8 on 18 df, so really there’s not a lot more to be said, but we
will press on with the more complex multinomial logistic model as an exercise.

par(mfrow=c(1,2))

plot(Silver/Gold ~ Year) ; plot(Bronze/Gold ~ Year)

# these plots show no obvious trends

Total <- Gold + Silver + Bronze

first.multinom <- multinom(Olmat~ Year, Hess=T)

summary(first.multinom)

eigen(first.multinom$Hess) # to check Hessian is positive-definite

Olp <- predict(first.multinom, type="probs"); round(Olp,2) # for fitted probabilities

Olp <- Olp*Total ; Olp<- round(Olp,2) # for fitted frequencies

cbind(Olp, Olmat) # for comparison

base.multinom <- multinom(Olmat ~1, Hess = T) # baseline model

#in which probabilities do not change with year

round(predict(base.multinom, type="probs"),2)

The resulting graphs are shown as Figure 26.
Note that there is a perceptible increase in the Total number of medals gained by Great Britain

since 1968. This must be due in part to the increase in the number of Olympic events over the
years; there were 172 events in 1968, and in 2008 there will be a total of 302 events. Try

plot(Total ~ Year)

But we see that Los Angeles 1984, in which there was a Total of 37 medals, was a ‘strange’ year,
and in fact that was the Olympic Games which was boycotted by nearly all the Eastern Bloc
countries. For this reason we now try

first.glm <- glm(Total[-6] ~ Year[-6], poisson) # to omit Los Angeles 1984

summary(first.glm) # shows a residual deviance of 6.83 on 7 df, hence a good fit

YYear <- 11:1

fv = exp(2.58660 +(0.07147*YYear))

plot(fv ~ YYEAR, type="l") # for fitted values, including for 2008

This gives
a predicted Total of 29.2 medals in 2008 (can you work out a confidence interval?), of which we
expect
7.1, 9.7, 12.4 as Gold, Silver, Bronze respectively.
Contrast this with the rather upbeat prediction given before the start of the 2008 games by Nick
Harris in The Independent. He predicted
16, 17, 26 as Gold, Silver, Bronze respectively.
As of August 19, 2008, it looks as though the actual outcome will be much better

than my predictions of 7.1, 9.7, 12.4!
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Figure 26: Have the British medals distributions changed from 1968 to 2004?

18. New for 2003. Here are two interesting new data sets with which you can experiment.
The first data set was collected by Mohammad Raza of Wolfson College, Cambridge, for his May
2003 Mathematical Tripos Part III essay ‘Analysis of a large and complex data set’. I am very
grateful to Mohammad for his permission to use the data.
We have data for 50 famous recent movies, compiled via the Internet Movie Database (IMDB).
KEY to the variables
year= year when the film was released
gross= amount of money in millions of US dollars, the film made, in the US
budget= amount in millions of $ US spent in making the film,
(note that the 2 monetary figures given above are not ‘adjusted’ in any way, eg for inflation.)
rating (also male rating & female rating)= ‘opinion of registered users of the IMDB website’. Each
individual gives an integer score between 1 (‘awful’) and 10 (‘excellent’) for a given film. The rating
for the film is then calculated as the average score. The ‘male rating & female ratings’ correspond
to scores given by men, women, respectively.
AWARDS:
These are AA, GG, BAFTA for Academy Award, Golden Globe Award and British Academy of
Film & Television Arts Awards, with a 1 indicating that the film won the ‘Best Picture’ award,
and a 0 indicating that it did not.
GENRE:
Each movie is given a 1 or a 0 to indicate whether it was in a particular ‘genre’, eg comedy, scifi
.... A film can be in more than one such genre.

year gross budget rating malerating femalerating

Titanic 1997 600.743 200.000 7.0 6.8 7.2

StarWars 1977 460.936 11.000 8.8 8.8 8.6

ET 1982 434.949 10.500 7.8 7.8 8.1
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SWPhantomMenace 1999 431.065 115.000 6.7 6.7 6.5

SpiderMan 2002 403.706 139.000 7.7 7.7 7.8

JurassicPark 1993 356.763 63.000 7.3 7.3 7.1

ForrestGump 1994 329.452 55.000 8.0 8.0 8.0

HarryPotterI 2001 317.558 130.000 7.3 7.2 8.0

LOTRFellowship 2001 313.364 109.000 8.9 8.9 9.0

TheLionKing 1994 312.775 79.300 7.6 7.5 7.9

TheGodfather 1972 134.821 6.000 9.0 9.1 8.6

TheShawshankRedemption 1994 28.341 25.000 9.0 9.0 9.0

TheGodfatherII 1974 57.300 13.000 8.9 8.9 8.4

SchindlersList 1993 96.067 25.000 8.8 8.8 8.9

ShichininNoSamurai 1954 0.187 0.500 8.9 9.0 7.7

Memento 2000 25.530 5.000 8.8 8.8 8.6

DrStrangelove 1964 9.164 1.800 8.7 8.8 8.1

SWReturnOfTheJedi 1983 309.064 32.500 8.1 8.1 8.0

IndependenceDay 1996 306.200 75.000 6.0 5.9 6.5

TheSixthSense 1999 293.502 55.000 8.3 8.2 8.4

SWEmpireStrikesBack 1980 290.159 18.000 8.7 8.7 8.4

HomeAlone 1990 285.761 15.000 6.2 6.2 6.7

Shrek 2001 267.652 60.000 8.1 8.1 8.3

HowTheGrinchStoleChristmas 2000 260.031 123.000 6.0 5.9 6.4

Jaws 1975 260.000 12.000 8.2 8.3 7.9

OneFlewOverTheCuckoosNest 1975 112.000 3.000 8.7 8.7 8.5

RearWindow 1954 1.559 1.000 8.7 8.7 8.6

RaidersOfTheLostArk 1981 242.374 20.000 8.6 8.7 8.4

TheUsualSuspects 1995 23.272 6.000 8.7 8.7 8.7

NorthByNorthwest 1959 13.275 4.000 8.6 8.7 8.5

PulpFiction 1994 107.930 8.000 8.6 8.7 7.9

Psycho 1960 32.000 0.800 8.6 8.6 8.3

TheSilenceOfTheLambs 1991 130.727 22.000 8.5 8.6 8.5

LawrenceOfArabia 1962 0.342 12.000 8.6 8.6 8.4

Monsters,Inc 2001 255.870 115.000 8.1 8.0 8.4

Batman 1989 251.189 35.000 7.3 7.3 7.1

MenInBlack 1997 250.148 90.000 6.8 6.8 7.0

ToyStory2 1999 245.823 90.000 8.2 8.2 8.3

Twister 1996 241.700 92.000 5.9 5.8 6.3

GhostBusters 1984 238.600 30.000 7.4 7.4 7.5

BeverlyHillsCop 1984 234.760 15.000 7.1 7.1 7.1

CastAway 2000 233.630 90.000 7.3 7.3 7.4

TheLostWorldJurassicPark 1997 229.074 73.000 5.4 5.4 5.2

AmericanBeauty 1999 130.058 15.000 8.5 8.5 8.3

Goodfellas 1990 46.836 25.000 8.5 8.6 8.0

Vertigo 1958 3.200 2.479 8.5 8.6 8.3

ApocalypseNow 1979 78.800 31.500 8.5 8.5 8.0

TheMatrix 1999 171.383 63.000 8.5 8.5 8.4

TaxiDriver 1976 21.100 1.300 8.4 8.5 7.9

SomeLikeItHot 1959 25.000 3.500 8.5 8.5 8.6

AA GG BAFTA comedy drama action horror fantasy

Titanic 1 1 1 0 1 0 0 0

StarWars 1 1 1 0 0 1 0 1

ET 1 1 1 0 0 0 0 1

SWPhantomMenace 0 0 0 0 0 1 0 0

SpiderMan 0 0 0 0 0 1 0 1
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JurassicPark 0 0 0 0 0 1 1 0

ForrestGump 1 1 1 1 1 0 0 0

HarryPotterI 0 0 0 0 0 0 0 1

LOTRFellowship 1 1 1 0 0 0 0 1

TheLionKing 0 0 1 0 0 0 0 0

TheGodfather 1 0 1 0 1 0 0 0

TheShawshankRedemption 1 0 0 0 1 0 0 0

TheGodfatherII 1 0 1 0 1 0 0 0

SchindlersList 1 1 1 0 1 0 0 0

ShichininNoSamurai 0 1 0 0 1 1 0 0

Memento 0 0 0 0 1 0 0 0

DrStrangelove 1 1 0 1 0 0 0 0

SWReturnOfTheJedi 0 0 0 0 0 1 0 1

IndependenceDay 0 0 0 0 0 1 0 0

TheSixthSense 1 1 0 0 1 0 1 0

SWEmpireStrikesBack 0 0 0 0 0 1 0 1

HomeAlone 0 0 1 1 0 0 0 0

Shrek 0 1 1 1 0 0 0 1

HowTheGrinchStoleChristmas 0 0 0 1 0 0 0 1

Jaws 1 1 1 0 0 1 1 0

OneFlewOverTheCuckoosNest 1 1 1 0 1 0 0 0

RearWindow 0 1 0 0 0 0 0 0

RaidersOfTheLostArk 1 1 0 0 0 1 0 0

TheUsualSuspects 0 1 0 0 0 0 0 0

NorthByNorthwest 0 0 0 0 0 0 0 0

PulpFiction 1 1 1 0 1 1 0 0

Psycho 0 0 0 0 0 0 1 0

TheSilenceOfTheLambs 1 1 1 0 0 0 1 0

LawrenceOfArabia 1 1 1 0 1 0 0 0

Monsters,Inc 0 0 0 1 0 0 0 1

Batman 0 0 0 0 0 1 0 1

MenInBlack 0 0 1 1 0 1 0 0

ToyStory2 0 0 1 1 0 0 0 1

Twister 0 0 0 0 0 1 0 0

GhostBusters 0 0 1 1 0 0 0 1

BeverlyHillsCop 0 0 1 1 0 1 0 0

CastAway 0 0 0 0 1 0 0 0

TheLostWorldJurassicPark 0 0 0 0 0 1 1 0

AmericanBeauty 1 1 1 0 1 0 0 0

Goodfellas 1 1 1 0 1 0 0 0

Vertigo 0 0 0 0 1 0 0 0

ApocalypseNow 1 1 1 0 1 1 0 0

TheMatrix 0 0 0 0 0 1 0 0

TaxiDriver 1 1 0 0 1 0 0 0

SomeLikeItHot 0 1 1 1 0 0 0 0

scifi romance thriller animation

Titanic 0 1 0 0

StarWars 1 0 0 0

ET 1 0 0 0

SWPhantomMenace 1 0 0 0

SpiderMan 1 0 0 0

JurassicPark 1 0 1 0

ForrestGump 0 0 0 0
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HarryPotterI 0 0 0 0

LOTRFellowship 0 0 0 0

TheLionKing 0 0 0 1

TheGodfather 0 0 0 0

TheShawshankRedemption 0 0 0 0

TheGodfatherII 0 0 0 0

SchindlersList 0 0 0 0

ShichininNoSamurai 0 0 0 0

Memento 0 0 1 0

DrStrangelove 1 0 0 0

SWReturnOfTheJedi 1 0 0 0

IndependenceDay 1 0 0 0

TheSixthSense 0 0 1 0

SWEmpireStrikesBack 1 0 0 0

HomeAlone 0 0 0 0

Shrek 0 1 0 1

HowTheGrinchStoleChristmas 0 0 0 0

Jaws 0 0 1 0

OneFlewOverTheCuckoosNest 0 0 0 0

RearWindow 0 0 1 0

RaidersOfTheLostArk 0 0 0 0

TheUsualSuspects 0 0 1 0

NorthByNorthwest 0 1 1 0

PulpFiction 0 0 1 0

Psycho 0 0 1 0

TheSilenceOfTheLambs 0 0 1 0

LawrenceOfArabia 0 0 0 0

Monsters,Inc 0 0 0 1

Batman 0 0 1 0

MenInBlack 1 0 0 0

ToyStory2 0 0 0 1

Twister 0 0 1 0

GhostBusters 1 0 0 0

BeverlyHillsCop 0 0 0 0

CastAway 0 0 0 0

TheLostWorldJurassicPark 1 0 1 0

AmericanBeauty 0 0 0 0

Goodfellas 0 0 0 0

Vertigo 0 0 1 0

ApocalypseNow 0 0 0 0

TheMatrix 1 0 1 0

TaxiDriver 0 0 1 0

SomeLikeItHot 0 1 0 0
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Worksheet 17. Fun and Games for British Union leaders (2004), and Hawks and doves at the
Monetary Policy Committee (2007)
The dataset below was given in The Independent on May 29, 2004, under the headline
‘One out of order, all out of order’.
‘This week’s unseemly brawl (at a barbecue in Hampstead) by Aslef officials continued a rich
tradition of union leaders’ excesses.’
The columns in the Table below give the ‘out of order rating’ for the categories
1. Fisticuffs, 2. Big Dinners, 3. Champagne socialist, 4. Luxury Travel,
5. Beer (no sandwiches), 6. Colourful Language, 7. Expenses Enthusiast, 8. Gender issues.
(By the way, if English is not your first language, you may need to get someone to explain some
of the above (euphemisms) to you.)
The ratings are given for the 8 union leaders listed below (I omit their surnames).

1 2 3 4 5 6 7 8

Joe ‘The Cherub’ 0 0 3 2 0 0 0 0

John ‘Big Boss’ 0 0 0 0 0 1 1 2

Andy ‘Chasse-Spleen’0 3 1 0 0 0 1 0

Derek 2 0 0 0 0 1 0 0

Shaun 2 0 0 0 2 1 0 0

Roger ‘The Dodger’ 0 1 1 0 0 0 2 0

Bollinger Bob 0 1 3 0 0 1 1 1

Raucous railwayman 0 1 2 0 2 2 0 0

You could, for example, construct a matrix to show the dissimilarities between all pairs of the 8
union bosses listed above.
Moving to a much more respectable scenario, but with data of the same structure, The Independent
on July 2, 2007, gave the following data set on the voting of the 9 members of the Monetary Policy
Committee with respect to the UK interest rates, under the heading ‘Hawks, doves and pigeons:
who influences UK interest rates?’. There were 9 successive monthly meetings, the first being 4/5
October, 2006.
Here we denote 1 to mean ‘votes for an increase (of 0.25%), 0 to mean ‘votes for no change in
interest rate’ and −1 to mean ‘votes for a decrease (of 0.25%)’.
(For the record, interest rate was initially 4.75%, and at the end of the 6/7June meeting was 5.5%.)
We illustrate the positions of the 9 members of the MPC firstly with hierarchical clustering, and
then by classical scaling. You may disagree with my (default) choice of metric. The individuals are
plotted via hierarchical clustering in Figure 27, and via classical scaling in Figure 28. This latter
is less successful as there are 3 pairs of coincident points, reflecting the fact that there are 3 pairs
of individuals who vote identically. You could experiment with ‘jitter’ to improve the look of this
plot.

4/5Oct 8/9Nov 6/7Dec 10/11Jan 7/8Feb 7/8Mar 4/5Apr 9/10May 6/7Jun

Blanchflower 0 0 0 0 0 -1 0 1 0

Besley 1 1 0 1 1 0 1 1 1

Sentance 1 1 0 1 1 0 1 1 1

King 0 1 0 1 0 0 0 1 1

Gieve 0 1 0 1 0 0 0 1 1

Tucker 0 1 0 0 0 0 0 1 0

Bean 0 1 0 0 0 0 0 1 0

Barker 0 1 0 1 0 0 0 1 0

Lomax 0 0 0 0 0 0 0 1 0

a <- read.table("MPCdata.July2", header=T)

MPCnames <- row.names(a)

a <- as.matrix(a)
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Figure 27: The monetary policy committee, hierarchical clustering

d <- dist(a)

clust.MPC <- hclust(d)

postscript("MPC.ps")

plclust(clust.MPC, hang=0.1,labels=MPCnames,main="Monetary Policy Committee")

dev.off()

loc <- cmdscale(d) ; x <- loc[,1] ; y <- loc[,2]

plot(x,y, type="n", main = "cmdscale for Monetary Policy Committee")

text(x,y, MPCnames, cex=1 )
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Figure 28: The monetary policy committee, classical multidimensional scaling

Worksheet 18: using capture-recapture data to estimate a total population size.
Agresti, in his 1994 Biometrics article
‘Simple capture-recapture models permitting unequal catchability and variable sampling effort’,
Vol 50, pp 494-500, (and also in his 2002 book) gives a table of counts, first discussed by Cormack
in 1985. This dataset was obtained from the results of a Capture-Recapture study of Snowshoe
Hares, and consists of a 26 contingency table, with one missing entry, on the numbers of hares in
a closed population which were trapped on each of 6 successive trapping days.
We need to set up suitable notation in order to describe the data precisely, thus
let a = 0 if an animal is NOT captured on the first day, and let a = 1 if it was captured on the
first day.
Define b = 0, 1, ..., f = 0, 1 for the remaining sequence of 5 days.
The sequence of 64 entries in the variate ‘count’ follows the pattern

a= 0 1 0 1 0 1................. 0 1

b= 0 0 1 1 0 0 1 1 ............ 1 1

c= 0 0 0 0 1 1 1 1 0 ...

d= 0 0 0 0 0 0 0 0 1 1 .....

e= 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ..

f= 32 0’s followed by 32 1’s

We can set up this nested pattern of 0’s and 1’s using expand.grid() as shown below.

count <- scan()

NA 3 6 0 5 1 0 0

3 2 3 0 0 1 0 0

4 2 3 1 0 1 0 0

1 0 0 0 0 0 0 0

4 1 1 1 2 0 2 0

4 0 3 0 1 0 2 0

2 0 1 0 1 0 1 0

1 1 1 0 0 0 1 2

# data from Agresti (2002) p512
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Thus you see that we don’t know the number NOT caught on any of the 6 days, and
for example, 6 animals were caught on day 2, but not on any of the other 5 days.
(There were 2 wretched creatures who were caught on every one of the 6 days.)

x <- expand.grid(a=0:1, b=0:1, c=0:1,d=0:1, e=0:1,f=0:1)

x[1:10,] # as a check

attach(x)

sum(count[2:64])

This shows that a total of 68 animals were seen at least once each.
Our aim is to fit a model to this table of 26 − 1 counts, in order to estimate the number of hares in
this (closed) population which were never seen at all: this enable us to estimate the total population
size.

A <- factor(a) ; B <- factor(b); C <- factor(c) ; D <- factor(d); E<- factor(e)

F<- factor(f)

First we fit a model which assumes mutual independence of the 6 catching occasions, but which
does not assume equal catchability. (The output has been slightly reduced.)

> first.glm <- glm(count~ A+B+C+D+E+F, poisson)

> summary(first.glm)

......................

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.9553 0.2891 6.765 1.34e-11 ***

A1 -1.3061 0.2875 -4.543 5.55e-06 ***

B1 -0.5194 0.2491 -2.085 0.037052 *

C1 -1.0128 0.2681 -3.778 0.000158 ***

D1 -0.6351 0.2520 -2.520 0.011735 *

E1 -0.8170 0.2585 -3.160 0.001575 **

F1 -0.2970 0.2460 -1.207 0.227357

Null deviance: 112.846 on 62 degrees of freedom

Residual deviance: 58.314 on 56 degrees of freedom

AIC: 154.50

> exp(1.9553)

[1] 7.066039

(You can see that a total of 16 animals were caught on day 1, compared with a total of 32 animals
caught on day 6: perhaps the animals were getting tired, and/or the trappers were getting better
at their task.)
The Residual deviance of 58.314 on 56 degrees of freedom shows us that the model does not fit
very well, but we will still use the estimate of the intercept to provide us with an estimate of the
count for which a = 0, b = 0, . . . f = 0, giving us a value of exp(1.9553) = 7.066039, and hence
an estimate of 68 + 7.1 = 75.1 as our estimate of N , the total population size. (We could use
68 + exp(1.9553 + /− 2 ∗ 0.2891) to give us our confidence interval for N .)
Agresti (1994) discusses various models which might fit better than the simple model of mutual
independence, and therefore which might provide more accurate estimates of N . For simplicity
here, we discuss only one generalization of the independence model: namely the model which allows
all 2-factor interactions between A,B, . . . , F . There are 15 such interactions, each with 1 df. We
again edit the resulting output somewhat.

next.glm <- glm(count~ (A+B+C+D+E+F)^2 , poisson)

summary(next.glm)
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Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 3.60498 0.51850 6.953 3.58e-12 ***

A1 -2.28082 0.57134 -3.992 6.55e-05 ***

B1 -1.82090 0.51966 -3.504 0.000458 ***

C1 -2.31716 0.55609 -4.167 3.09e-05 ***

D1 -2.14780 0.54364 -3.951 7.79e-05 ***

E1 -2.06819 0.53846 -3.841 0.000123 ***

F1 -2.09074 0.54177 -3.859 0.000114 ***

.....................

A1:E1 1.46053 0.66617 2.192 0.028348 *

.....................

C1:F1 1.59899 0.64082 2.495 0.012588 *

D1:F1 1.79685 0.60052 2.992 0.002770 **

Null deviance: 112.846 on 62 degrees of freedom

Residual deviance: 32.424 on 41 degrees of freedom

AIC: 158.61

> exp(3.60498)

[1] 36.78095

Hence this more complex model (for which in fact only 3 of the 15 interactions are significant)
gives us a point estimate of N as 36.8 + 68 = 104.8.
The dataset discussed above is by now rather old (though a classic, no doubt). Agresti’s 1994
paper gave a GLIM program for the log-linear analysis, discussed a variety of possible models
(including latent class models) for this dataset. If you want a new dataset as a challenge, try the
following, taken from ‘Capture-recapture methods to size alcohol-related problems in a population’
by Corrao, Bagnardi, Vittadini and Favilli, J.Epidemiol. Community Health 2000;54;603-610.
Our object is to estimate the total number of individuals with alcohol-related problems (ARP) in
the target population, by combining data from 4 different (and clearly non-independent) ‘flagging’
sources.
Here is the table of data, as published on p 606 by Corrao et al. (You may need to think a bit in
order to put it into R/S-Plus.)

Gender M M F F

Age Y O Y O Total

Patients flagged by exactly 1 source

F1 30 40 6 12 88

F2 31 12 7 7 57

F3 12 5 3 2 22

F4 46 81 12 16 155

Patients flagged by exactly 2 sources

F1&F2 2 1 0 0 3

F1&F3 1 0 0 0 1

F1&F4 1 2 0 0 3

F2&F3 2 2 0 1 5

F2&F4 3 3 1 0 7

F3&F4 3 1 0 0 4

Patients flagged by exactly 3 sources
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F1&2&3 0 0 0 0 0

F1&2&4 0 0 0 0 0

F1&3&4 1 0 0 0 1

F2&3&4 1 0 1 0 2

Patients flagged by all 4 sources

F1&2&3&4 1 0 0 0 1

____________________________

Total 134 147 30 38 349

___________________________

Key to above table
Gender, M = male, F =female
Age, Y = under 50 yrs, O = 50 yrs or older
The sources for ‘flagging’ the patients were
F1 = self-help volunteering groups (similar to Alcoholics Anonymous)
F2 = psychiatric ambulatory
F3 = Public Alcohology Service
F4 = hospital discharges.
The catchment area was ‘all residents in the area of Voghera, a Northern Italy rural area with an
economy based on vinegrowing and wine production... with a resident population of 132618 over
15 years in age.’
Corrao et al discuss various log-linear models, and conclude that the target population contained
approximately 2500 individuals with ARP.
How does this compare with your estimate? What is your confidence interval? Do you have to
treat the table for men differently from that for women?
(The authors conclude that the answer to this question is No, but that Young and Old should be
analysed separately.)
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