
Markov Chains on Continuous State Space

1 Markov Chains Monte Carlo

1. Consider a discrete time Markov chain {Xi, i = 1, 2, ...} that takes values on a con-
tinuous state space S.

Examples of continuous S are:

• Rd, d dimensional space of real numbers

• a d-dimensional unit simplex, a subset of Rd

• the Mandelbrot Set

• the Brownian motion

• set of all color configurations of an image

• set of all geographical topologies

• any uncountably infinite set

Since Pxy = 0,∀x, y ∈ S We have to modify the definition of transition matrix Pxy to
transition kernel P (x, A) where for all x ∈ S and A ⊂ S. Likewise, the concepts of
irreducibility, recurrence, and positive recurrence, have to be re-define on a continuous
state space.

2. The transition kernel P (x, .)

For all x ∈ S, P (x, A) is defined as the probability of reaching the measurable set A
from state x.

3. The transition kernel density p(x, .)

For all x ∈ S, p(x, y) is defined as a non-negative function such that

P (x, A) =
∫

y∈A
p(x, y)dy.

Note that for a given x, p(x, .) is a pdf , and

P (x,S) =
∫

y∈S
p(x, y)dy = 1.

4. φ-Irreducible: For each measurable set A with φ(A) > 0, for each x there exists n such
that P n(x, A) > 0.

1



5. Recurrent: For every measurable set B with φ(B) > 0,

P (X1, X2, . . . ∈ B i.o.|X0) > 0

for all X0, and
P (X1, X2, . . . ∈ B i.o.|X0) = 1

for φ almost-every X0.

6. Harris recurrence means that

P (X1, X2, . . . ∈ B i.o.|X0) = 1

for all X0.

7. A probability distribution π is called the stationary distribution for the Markov chain
with transition density p (or transition kernel P ) if

π(y) =
∫

p(x, y)π(x)dx,

for all y ∈ S, or equivalently,

π(A) =
∫

P (x, A)π(x)dx

for all measurable sets A ⊂ S, in which case we may write πP = π.

8. Periodic: There exists n ≥ 2 and a sequence of nonempty, disjoint measurable sets
A1, A2, . . . , An such that ∀x ∈ Aj (j < n), P (x, Aj+1) = 1, ∀x ∈ Aj, P (x, A1) = 1
∀x ∈ An.

9. Aperiodic: If the transition kernel has density q(.|x), a sufficient condition for aperiod-
icity is that q(.|x) is positive in a neighborhood of x, since the chain can them remain
in this neighborhood for an arbitrary number of times before visiting other set A.

10. Theorem: Let P be a Markov transition kernel, with invariant distribution π, and
suppose that P is π irreducible.

Then π is the unique (invariant distribution of P ).

If P is aperiodic, then for π almost-every x

||P n(x, A)− π(A)||TV → 0

where the distance between two probability measures π1 and π2 is measured using the
Total Variation Norm: ||π1 − π2||TV = supA|π1(A)− π2(A)|.
If P is Harris recurrent, then the convergence occurs for all x.
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11. In words, we can start at essentially any X, run the chain for a long time, and the final
draw has a distribution that is approximately π. The “long time” is called the burn
in, and it is generally impossible to know how long this needs to be in order to get a
good approximation.

12. We often don’t need independence for the most common application: estimating the
mean of a function Eπf with respect to the invariant distribution. This is true as long
as the chain is uniformly ergodic:

supx‖P n(x, ·)− π‖TV ≤ Mrn

for some M > 0 and r < 1. In this case there is a central limit theorem: let f̄n =∑n
j=1 f(Xj)/n denote the sample mean. Then

√
n(f̄n − Eπf) converges to a normal

distribution with mean 0.

2 Metropolis-Hastings Algorithm

One of the most popular MCMC technique used in approximate sampling from complicated
distributions is the Metropolis-Hastings algorithm. The setup is as earlier: we are interested
in generating samples of a random variable X distributed according to the density f(x).

Let qx(.) = q(x, .) = q(.|x) be a pdf such that:
1. It is easy to sample from q(.|x) for all x.
2. The support of q contains the support of f .
3. The functional form of q(y|x) is known or q(y|x) is symmetric in y and x. As shown

later, it is not necessary to know the normalizing constant in q(y|x) as long as it does not
depend upon x.

Given f(x) and a choice of q(y|x), that satisfies the above mentioned properties, the
Metropolis- Hastings algorithm can be stated as follows:

(Metropolis-Hastings Algorithm) Choose an initial condition X0 in the support of
f(x). The Markov chain X1, X2, ..., Xn is constructed iteratively according to the steps:

1. Generate a candidate Y ∼ q(y|Xt).
2. Update the state to Xt+1 according to

Xt+1 =

{
Y w.p. α(Xt, Y )
Xt w.p. 1− α(Xt, Y )

where

α(x, y) = min{f(y)

f(x)

q(y, x)

q(x, y)
, 1}

q(x, y) is called the proposal density and α(x, y) is called the acceptance ratio/probability.
Consider first the case where the ratio

f(y)

f(x)

q(y, x)

q(x, y)
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values more than one and hence the acceptance probability takes the value 1.0. In this case,
we set Xt+1 = Y with probability one.

In case this ratio goes below one, we set Xt+1 to Y with acceptance probability α(Xt, Y ).
Note that the normalizing constants in the two densities f and q cancel out and hence

are not explicitly needed. However, if the normalizing constant for q(y|x) depends upon x,
then it does not cancel out and is needed in the expression for α(x, y).

In the algorithm, one generates samples from the proposal q at every step independently
but the elements of the chain are not independent of each other. In fact, many times it is
possible to have Xt and Xt+1 be identical. There are some special cases that occur often in
practice:

1. When q(y|x) is symmetric in the two arguments, the expression for the acceptance
ratio simplifies to

α(x, y) = min{f(y)

f(x)
, 1}

where
f(y)

f(x)

is often called the likelihood ratio. This is the case Metropolis and his colleagues considered
in their 1953 paper: ”Equation of state calculation by fast computing machines,” Journal of
Chemical Physics, 21: 1087-1092, 1953. This is the paper that introduces the world to the
”Metropolis Algorithm,” the basic MCMC algorithm.

2. Independent M-H: In cases where the proposal density is independent of the current
state, i.e. q(y|x) = q(y), then the algorithm is called Independent Metropolis-Hastings
algorithm. In this case, the acceptance ratio becomes:

α(x, y) = min{f(y)

f(x)

q(x)

q(y)
, 1}

3. Random Walk M-H: In some applications, it is useful to generate proposals using a
random walk. That is, the proposal is obtained using the equation: Y = Xt + ε, where ε has
density g(ε) that is symmetric and unimodal at zero. The proposal density is symmetric:
q(y|x) = g(y − x), and the algorithm simplifies.

For a broad set of proposal densities, it can be shown that the M-H algorithm generates a
Markov chain that asymptotically becomes stationary and generates samples from the target
density f(x). To derive the proof, we need to define the detailed balance or reversibility
condition.

A homogenous Markov chain with transition kernel density function p(x, y) is said to
satisfy the detailed balance or reversibility condition if there exists a function f such
that:

f(x)p(x, y) = f(y)p(y, x)

for every pair x and y.
This condition can be loosely understood as:
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• the process moves from x to y equals to the moves from y to x, or, in other words,

• the probabilistic transition mechanism has no direction of time, they are similar sto-
chastically when the chain runs backward in time.

• this is the sufficient condition for a chain to achieve stationarity

Theorem: Suppose that a Markov chain with the transition function p satisfies the detailed
balance condition with f being a pdf. Then, f is a stationary probability density of that
chain.
Proof: For all y ∈ S, we integrate both sides of the detailed balance condition,∫

S
f(x)p(x, y)dx =

∫
S

f(y)p(y, x)dx = f(y)
∫
S

p(y, x)dx = f(y)

Thus, f is a stationary probability density.

Theorem: For any proposal density q that satisfies the three conditions listed earlier, f is
a stationary probability density of the Markov chain produced by M-H algorithm.
Proof: We just need to that the transition function of the M-H Markov chain satisfies the
detailed balance condition with the given f(x). The transition kernel pdf can be represented
as

p(x, y) = q(x, y)α(x, y) + r(x)δx(y)

where δx is the point mass at x, i.e.,

δx(y) =

{
0 if y 6= x
1 if y = x

and

r(x) = 1−
∫

q(x, y)α(x, y)dy

is the marginal probability of remaining at x.
We would like to show that the detailed balance condition

f(x)p(x, y) = f(y)p(y, x)

is satisfied.
When x = y, then the detailed balance condition

f(x)p(x, y) = f(y)p(y, x)

is trivially true.
When x 6= y, the transition kernel pdf becomes

p(x, y) = q(x, y)α(x, y)

or equivalently
p(y, x) = q(y, x)α(y, x)
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• Case 1: If α(x, y) ≤ 1, then α(y, x) = 1, and

α(x, y) =
f(y)

f(x)

q(y, x)

q(x, y)

Thus,

f(x)p(x, y) = f(x)q(x, y)α(x, y)

= f(x)q(x, y)
f(y)

f(x)

q(y, x)

q(x, y)

= f(y)q(y, x)

= f(y)q(y, x)α(y, x)

= f(y)p(y, x)

Hence the detailed balance condition is satisfied.

• Case 2: If α(y, x) ≤ 1, then α(x, y) = 1, and

α(y, x) =
f(x)

f(y)

q(x, y)

q(y, x)

Thus,

f(y)p(y, x) = f(y)q(y, x)α(y, x)

= f(y)q(y, x)
f(x)

f(y)

q(x, y)

q(y, x)

= f(x)q(x, y)

= f(x)q(x, y)α(x, y)

= f(x)p(x, y)

Hence the detailed balance condition is satisfied.

Some intuition for case 1:
When α(x, y) < 1, then f(y)q(y, x) < f(x)q(x, y) the process moves from x to y too

often, and from y to x too rarely. To correct this condition for stationarity, we reduce the
number of moves from x to y by introducing a probability α(x, y) < 1 that it moves to y,
and a positive probability of 1− α(x, y) that it stays at x.

Careful reader will motice that case 2 is just the dual image (change x to y, and y
to x) of case 1. Moreover, α(y, x) = 1 is equivalent to α(x, y) = 1, and is equivalent to
q(x, y) = p(x, y), and the detail balance condition is obviously true under this special case.
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3 The Gibbs sampler

A commonly encountered version of MCMC is the Gibbs sampler. The Gibbs sampler is
essentially a variation of Metropolis-Hastings. We consider Xt+1 = (X

(1)
t+1, X

(2)
t+1, · · · , X

(p)
t+1)

consists of p components, and each component is sampled in turn from its conditional distrib-
ution given the values of all the other components. Typically the component-wise transitions
are applied systematically in cycle as follows:

X
(1)
t+1 ∼ f(X(1)|X(2)

t , X
(3)
t , · · · , X(p)

t )

X
(2)
t+1 ∼ f(X(2)|X(1)

t+1, X
(3)
t , · · · , X(p)

t )
...

X
(p)
t+1 ∼ f(X(p)|X(1)

t+1, X
(2)
t+1, · · · , X

(p−1)
t+1 )

Note that the new value for each component is used immediately as soon as it is available.
A reasonable alternative to systematically in cycle is to cycle through a random per-

mutation of the components, either a fixed permutation, or a new permutation for each
cycle.

Whether Gibbs sampling can be applied depends heavily on whether it is possible to
easily sample from the conditional distributions of the components. In the best case, the
conditional distribution has some parametric form from which we know how to sample.

For some highly structured problems such as Markov random fields, the components may
be too dependent for Gibbs sampling to be efficient. However, in such cases the structure
often permits update proposals from the conditional distributions for larger component
blocks instead of just individual components.

Whether Gibbs sampling can be applied depends heavily on whether it is possible to
easily sample from the conditional distributions of the components. In the best case, the
conditional distribution has some parametric form from which we know how to
sample.

For some highly structured problems such as Markov random fields, the components may
be too dependent for Gibbs sampling to be efficient. However, in such cases the structure
often permits update proposals from the conditional distributions for larger component
blocks instead of just individual components.

Hammersley-Clifford Theorem:
The joint density can be constructively derived from the conditional densities.

f(x, y) = f(x|y)f(y) = f(y|x)f(x),

so
f(y)

f(x)
=

f(y|x)

f(x|y)
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and ∫ f(y)

f(x)
dy =

1

f(x)
=
∫ f(y|x)

f(x|y)
dy

Thus,

f(x, y) = f(y|x)f(x) =
f(y|x)∫ f(y|x)
f(x|y)

dy
.

So, what is the joint density f(x, y) when f(x|y) ∝ ye−xy and f(y|x) ∝ xe−xy ?
Note that: a joint density cannot be derived from the marginal densities. Lots of

counter-examples...

Examples:

• Uniform sampling inside the unit sphere in the Rp space

{X ∈ Rp : ||X|| ≤ 1}

The volume of the unit sphere S in Rp is

S =
πk/2

Γ(k/2 + 1)

The smallest cube C which contains S in p-dimensional space is

C = {X = (x1, · · · , xp) ∈ Rp : ||xi|| ≤ 1,∀i}

with volume 2p.

The ratio of the volume of S to C is

πp/2

Γ(p/2 + 1)2p

which goes to 0 for large p.

For p from 1 to 10, the ratio in percentage (%) is

100.0000000 78.5398163 52.3598776 30.8425138 16.4493407

8.0745512 3.6912234 1.5854344 0.6442400 0.2490395

• One example in Casella, G. and George, E. (1992). Explaining the Gibbs Sampler.
The American Statistician 46, 167 - 174 is the following:

For

f(x, y) ∝
(
n

x

)
yx+α−1(1− y)n−x+β−1,

where x = 0, 1, · · · , n and 0 ≤ y ≤ 1, we have f(x|y) is Binomial(n, y) and f(y|x) is
Beta(x + α, n− x + β).
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• Bivariate Normal

• Multivariate Normal. Let

X =

(
X1

X2

)
∼ Np

((
µ1

µ2

)
,

(
Σ11 Σ12

Σ21 Σ22

))

where X ∈ Rp, X1 ∈ Rp1 and X2 ∈ Rp2 with p = p1 + p2.

When |Σ22| > 0, the conditional distribution of X1 given X2 = x2 is

Np1

(
µ1 + Σ12Σ

−1
22 (x2 − µ2), Σ11 − Σ12Σ

−1
22 Σ21

)
•

f(x, y) ∝ exp(−|x| − |y|)

•
f(x, y) ∝ (1 + x2 + y2 + 0.9xy)−6 + (1 + 9(x− 2)2 + 4y2)−6
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