
WinBUGS for Beginners

Gabriela Espino-Hernandez

Department of Statistics
UBC

July 2010

“A knowledge of Bayesian statistics is assumed…”

The content of this presentation is mainly based on
WinBUGS manual

Introduction

� BUGS1: “Bayesian inference Using Gibbs Sampling”
� Project for Bayesian analysis using MCMC methods
� It is not being further developed

� WinBUGS 1,2

� Stable version
� Run directly from R and other programs

� OpenBUGS 3

� Currently experimental
� Run directly from R and other programs
� Running under Linux as LinBUGS

1 MRC Biostatistics Unit Cambridge, 2 Imperial College School of Medicine at St Mary's, London
3 University of Helsinki, Finland

WinBUGS
� Freely distributed

http://www.mrc-bsu.cam.ac.uk/bugs/welcome.shtml

� Key for unrestricted use
http://www.mrc-bsu.cam.ac.uk/bugs/winbugs/WinBUGS14_immortality_key.txt

� WinBUGS installation also contains:
� Extensive user manual
� Examples

� Control analysis using:
� Standard windows interface
� DoodleBUGS: Graphical representation of model

� A closed form for the posterior distribution is not needed
� Conditional independence is assumed
� Improper priors are not allowed

Inputs

� Model code
� Specify data distributions
� Specify parameter distributions (priors)

� Data
� List / rectangular format

� Initial values for parameters
� Load / generate

Model specification

� Multiple statements in a single line or one statement
over several lines

� Comment line is followed by #

� Types of nodes
1. Stochastic

� Variables that are given a distribution

2. Deterministic / Logical

� Logical functions of other nodes

3. Constant

model {
statements to describe model in BUGS language

}

Model specification
� Stochastic and deterministic nodes appears only once

on the LHS of a statement (except in data transformation)

� Name nodes
• Case sensitive
• Characters allowed: letters, numbers and period
• Start with a letter
• No end with a period
• Maximum 32 characters

� Numbers
• Standard or exponential notation
• Include decimal point in the exponential format

• Notation allowed: .0001 0.0001
1.0E-4 1.0e-4
1.E-4 1.0E-04

• Not allowed: 1E-4

Model specification
� Stochastic nodes:

� Assign distributions using ~ (“is distributed as”)

� Help →WinBUGS user manual → Distributions

� Handle 19 discrete/continuous univariate distributions:

eg: Bernoulli, Binomial, Categorical, Negative Binomial, Poisson, Beta,
Chi-squared, Exponential, Gamma, Normal, Pareto, Student-t,
Uniform, Weibull, etc

� Handle 5 discrete/continuous multivariate distributions:

Multinomial, MVN, Multivariate Student-t, Dirichlet, Wishart

� No missing data, except for multivariate normal data

Model specification
� Stochastic nodes:

� Examples

for (i in 1:N) {
z[i] ~ dnorm(mu, tau)

}
Note: tau = precision of normal distribution

for (j in 1:J) {
y[j] ~ dbin(p[j], n[j])

}

for (i in 1:N) {
Y[i, 1:M] ~ dmnorm(mu[], Omega[,])

}

Model specification
� Logical nodes:

� Assign logical expressions using <- (“to be replaced by”)

� Logical expressions can be built using:

� Operators: +, -, *, /, unitary minus (-A)

� Logical functions:

Help → WinBUGS user manual → Model Specification → Logical
nodes → Table I: Functions

� Examples:

N <- K+2

mu[i] <- beta0 + beta * z[i] + b[i]

prec[1:2, 1:2] <- inverse(var.matrix[,])

log(e[i, j]) <- inprod(beta[1:3] , X[i, j, 1:3])

Model specification
� Logical nodes:

� Cannot be given data or initial values (except when using the
data transformation)

� Link functions that can be used on the left hand side of logical
nodes

log logit cloglog probit

logit(mu[i]) <- beta0 + beta * z[i] + b[i]

Model specification

� Data transformation:

� Data y available

� Want to model sqrt(y)

for (i in 1:N) {
z[i] <- sqrt(y[i])
z[i] ~ dnorm(mu, tau)

}

Model specification
� Arrays and indexing

� Vectors and matrices are indexed within square brackets []
� n:m represents n,n+1,...,m
� y[] indicates all values of a vector y
� y[,3] indicates all values of the third column of a two-

dimensional array y

� Range of the variable must be explicitly defined in
multivariate nodes
� x[1:K] ~ dmnorm(mu[], tau[,])

� Up to three dimensions are currently allowed (?)

� Multidimensional arrays are handled as one-dimensional
arrays with a constructed index
� y[i, j]
� x[i, j, 1:3]

Model specification
� Censoring

� Interval censored: y ~ ddist(theta)I(lower, upper)

� Right censored: y ~ ddist(theta)I(lower,)

� Left censored: y ~ ddist(theta)I(,upper)

� The structure is only use if y has not been observed, otherwise
the constraints will be ignored

� If y, theta, lower and upper are not observed, then lower and
upper must not be functions of theta

Data
� Available data and constants nodes are specified in a

data file

� Format:
� List (S-Plus/R format)

� Rectangular: Data in arrays

� Whole array must be specified in a single file

� Missing values are represented as NA

� All variables in a data file must be defined in a model

� It is possible to load a mixture of list and rectangular
format data for the same model (see Rats example)

Data: list format

� Scalars and arrays are named and given values in a single structure
� No space between list and (
� Example:

list(
data in a list format

)

list(
xbar = 22, N = 3, T = 5,
x = c(8.0, 15.0, 22.0, 29.0, 36.0),
Y = structure(

.Data = c(151, 199, 246, 283, 320,
145, 199, 249, 293, 354,

153, 200, 244, 286, 324),
.Dim = c(3,5))

)

Data: list format
� Example of 3 * 2 * 4 dimensional array:

1 2 3 4
5 6 7 8

9 10 11 12
13 14 15 16

17 18 19 20
21 22 23 24

list(
Y = structure(

.Data = c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,13, 14,
15, 16, 17, 18, 19, 20, 21, 22, 23, 24),

.Dim = c(3, 2, 4))
)

Data: rectangular format

� Columns headed by array name

� Arrays of equal size

� Array names must have explicit brackets

� The first index position of any array must be empty

� End file with an 'END' statement, followed by at least one blank line

� Example:
age[] sex[]
26 0
52 1
.…
END

var1[] var2[] varK[]
.....
END

Data: rectangular format

� Example of multi-dimensional arrays:

Y[,1] Y[,2] Y[,3] Y[,4] Y[,5]
151 199 246 283 320
145 199 249 293 354
147 214 263 312 328
.......
153 200 244 286 324
END

var1[] var2[] varK[]
.....
END

Initial values
� Required for all stochastic nodes (without available data)

� Initial values can be:
� Load

� Specify initial values following same format as Data

� Generated
� Use Specification tool

Air example
� Evaluate association between:

� Respiratory illness and exposure to nitrogen dioxide (NO2)

� Measurement error in the exposure

� Studied subjects: 103 children

� Data:

Bedroom NO 2 level in ppb (Z)

Respiratory illness (y) <20 20-40 40+ Total

Yes 21 20 15 56

No 27 14 6 47

Total 48 34 21 103

y response variable.

Z observed exposure. 3 categories zj (j = 1, 2, 3)

Air example
� Berkson measurement error model: Association between

true exposure (X) and observed exposure (Z)

Xj= α + βZj + εj

where α = 4.48,

β = 0.76 and

εj follows a normal distribution with zero mean

and variance 81.14

� Observed exposure (Zj) takes values 10, 30 or 50

Air example
� A logistic regression model is assumed

yj ~ Binomial(pj, nj)

logit(pj) = θ1 + θ2 Xj

where pj = probability of respiratory illness for children

in the j-th exposure group

θ1 and θ2 are the regression coefficients

� The regression coefficients are given vague independent
normal priors

Air example
� Model

model {
for(j in 1 : J) {

DISEASE MODEL
y[j] ~ dbin(p[j], n[j])
logit(p[j]) <- theta[1] + theta[2] * X[j]

MEASUREMENT ERROR MODEL
X[j] ~ dnorm(mu[j], tau)
mu[j] <- alpha + beta * Z[j]
}

PRIORS
theta[1] ~ dnorm(0.0, 0.001)
theta[2] ~ dnorm(0.0, 0.001)

}

Air example
� Data

list(J = 3, alpha = 4.48, beta = 0.76, tau = 0.01234,
n = c(48, 34, 21),
Z = c(10, 30, 50),
y = c(21, 20, 15))

� Initial values

list(theta = c(0.0, 0.0), X = c(0.0, 0.0, 0.0))

Run model

1. Check model
“model is syntactically correct”

2. Load data
“data loaded”

3. Specify num. of chains to be simulated

4. Compile model
“model compiled”

5. Initial values for each chain
� Load “model is initialized”

� Generate “initial values generated, model initialized”

Menu bar → Model → Specification tool

Update model

→

Menu bar → Model → Update tool

1. Specify number of MCMC updates to be carried out

� Data have not been stored
� Used for “burn-in” period

Monitor runs
Menu bar → Inference → Sample monitor tool

Monitor a single node (unknown quantity)
� Type name of node to be monitored
� Click on “set”
� Update model

Generate simulated values of all unknown quantities
� Repeat steps 1 and 2 for all nodes to be monitored
� Type * to select all the nodes
� Update model

Sample monitor tool

� trace Plots variable value against iteration number (dynamic)
� history Plots a complete trace
� density Plots a smoothed kernel density estimate / histogram
� stats Summary statistics
� coda ASCII representation of the monitored values for use in

R
� quantiles Plots running mean and 95% CI against iteration num.
� auto cor * Plots/calculates the autocorrelation function of the

variable out to lag-50

* Values can be listed by double-clicking on the plot followed by ctrl-left-mouse-click

Sample monitor tool

� bgr diag * Plots/calculates the Gelman-Rubin convergence
statistic.

� Blue: Width of the 80% interval of the pooled runs
� Green: Average width of the 80% intervals within the individual

runs
� Red: R = pooled / within
� Interval widths are normalised to have an overall maximum of 1
� R >1 if starting values are over-dispersed
� Look for convergence of R to 1, and convergence of pooled

and within interval

* Values can be listed by double-clicking on the plot followed by ctrl-left-mouse-click

STATS
� node Name of the unknown quantity
� mean Posterior mean of the unknown quantity
� sd Posterior standard deviation of the unknown

quantity
� MC error Computational accuracy of the mean
� 2.5% Lower endpoint of the 95% credible interval
� median Posterior median
� 97.5% Upper endpoint of the 95% credible interval
� start The starting simulation (after discarding the

start-up)
� sample Number of simulations used to approximate

the posterior distribution

Output options
� By default WinBUGS opens a new window for each output

(stats, history, density, …)

� All output could be written into single log file:
� Options menu → Output options → select “log”

� Access to the output:
� Info menu → Open Log

CODA
� CODA: Convergence Diagnostic and Output Analysis.

� Files produced:
� Output file for each chain: CODA for chain N or (.out file)

� Contains iteration number and value

� Description file: CODA index or (.ind file)
� Indicates which lines of the CODA for chain N file correspond to

which variable

� Save files:
� Menu bar → File → Save as
� Select Plain Text (.txt) in Save as type
� Give a file name, enclose it in quotes, and save it
� Example:

� Output files: “AirChain1.out” and “AirChain2.out”
� Description file: “Air.ind”

Analysis using R

� Required library: coda
http://cran.r-project.org/web/packages/coda/coda.pdf

� See WinBUGS example in R

Analysis using R

� Another option is using library: boa
Bayesian Output Analysis
http://www.public-health.uiowa.edu/boa/BOA.pdf

Run directly from R
� Required package for OpenBUGS: BRugs

� Required package for WinBUGS: R2WinBUGS
� Write a Bugs model in a file with a .bug extension

� Go into R

� Prepare the inputs to the bugs function in R and run it

� A WinBUGS window will pop up and R will freeze up

� The model will now run in WinBUGS (Log window)

� When WinBUGS is done, its window will close and R will work
again.

� See example in R

Useful links

� The BUGS Project
http://www.mrc-bsu.cam.ac.uk/bugs/welcome.shtml
http://www.mrc-bsu.cam.ac.uk/bugs/documentation/contents.shtml

� Woodworth, George G. Biostatistics: A Bayesian Introduction.
Introduction to WinBUGS. 2004
http://www.stat.uiowa.edu/~gwoodwor/BBIText/AppendixBWinbugs.
pdf

� Sturtz S, Ligges U, Gelman A (2005). R2WinBUGS: A Package for
Running WinBUGS from R. Journal of Statistical Software, 12(3), 1-
16.
http://cran.r-
project.org/web/packages/R2WinBUGS/vignettes/R2WinBUGS.pdf

Useful links

� Plummer M, Best N, Cowles K and Vines K. (2006). CODA:
Convergence Diagnosis and Output Analysis for MCMC. R News.
6(1), 7-11
http://cran.r-project.org/doc/Rnews/Rnews_2006-1.pdf

� Running WinBugs and OpenBugs from R
http://www.stat.columbia.edu/~gelman/bugsR/

Selected references

� Brooks SP and Gelman A (1998) Alternative methods for monitoring
convergence of iterative simulations. Journal of Computational and
Graphical Statistics. 7, 434-455.

� Lunn DJ, Thomas A, Best N, and Spiegelhalter D (2000) WinBUGS -
- a Bayesian modelling framework: concepts, structure, and
extensibility. Statistics and Computing, 10:325--337.

� Ntzoufras, I (2009) Bayesian modeling using WinBUGS. John Wiley
and Sons.

