Feasibility Study for Commercial Production of Biodiesel in the Treasure Valley of Idaho

Presented by
Charles Peterson and Paul Mann
Interim Dean, College of Engineering and Alternative Energy
Consultant respectively
University of Idaho
Biodiesel As An Alternative to Diesel Fuel

• Invention of the Diesel Engine 1897

• Alternative Fuels
 – Environmental Concerns
 – Energy Shortages
Objectives

• Local sources of feedstocks
 • Oil
 • Alcohol
 • Catalyst

• Identify Marketing Options
 • Fuel
 • Glycerin
 • Meal

• Biodiesel Plant site Requirements

• Constraints for Biodiesel Plant
 • Economic
 • Environmental
 • Policy
 • EPA Fuel Certification
Biodiesel Technology

- Multiple technologies
- Commercial processes to produce an ASTM standard Biodiesel may be proprietary
- Any processor must anticipate the analytical requirements to assure ASTM standard compatibility
Greater Treasure Valley Area

9 Counties (2001)
- Ada - 312,337
- Boise - 7,011
- Canyon - 139,821
- Elmore - 29,157
- Gem - 15,482
- Owyhee - 11,008
- Ada - 312,337
- Boise - 7,011
- Canyon - 139,821
- Elmore - 29,157
- Gem - 15,482
- Owyhee - 11,008
- Washington - 9,956
- Malheur County, Oregon - 31,456
- Total - 577,096

Courtesy Idaho Power Data
Study Area

• The study considers only feedstocks available within the 9 county area and markets within the 9 county area.
 – Feedstocks outside the area might be preempted by a biodiesel plant in that area.
 – Markets outside the study area would be competitive markets with other biodiesel producers
Study Area

• This area has and is experiencing rapid growth which should be considered when developing a business plan for a potential biodiesel plant
 – In the past 6 years, daily traffic volumes on I-84 linking Ada and Canyon counties increased nearly 50%
 – Recent population projections for Ada and Canyon counties indicate an increase of an additional 25% from 1998 to 2005.
Biodiesel Feedstocks
Biodiesel Feedstocks

• Virgin Oils
 – Rapeseed, canola, yellow mustard crops
 – Other specialty oil seed crops
 • safflower
 • sunflower
 • other

• Used Oil from restaurants and deli’s
• Used Oil from processing plants
• Tallow
Biodiesel Feedstocks

• Used Oil from restaurants and deli’s
 – Estimate 1.1 gallons per day per person (NREI)
 • 555,000 @ 1.1 gal/person/yr = 600,000 gal
 – Survey of current renders
 • = 1 million gal/yr - Collection area > TV
 – Challenge
 • estimate the percentage that can be obtained for biodiesel use
 • current renders are reluctant to give up current customers to supply a new, and uncertain market such as biodiesel -- cash talks
 • Setting up a system to collect these oils would be expensive and competitive
Biodiesel Feedstocks

- Used Oil from processing plants
 - information is proprietary
 - Biodiesel plant must negotiate individually
 - possibly 0-3 million pounds
 - supply not certain because of different products and re-use strategies
 - processing plant goal is to not have waste grease
 - High quality feedstock < 3% FFA
Biodiesel Feedstocks

• Tallow
 – large supply
 – one meat processing plant recently closed
 – recent changes in livestock feed regulations prohibit this product from being used for feed
 – one of the most abundant sources of oil available in the Treasure Valley
 – Our estimate - 56 million pounds
 – current renders are reluctant to give up current customers to supply a new, and uncertain market such as biodiesel
 • may be negotiable
Biodiesel Feedstocks

• Current renders are reluctant to transfer oil from current customers to supply a new, and uncertain market such as biodiesel – everything is negotiable

• Starting a new oil recovery business
 – Duplicating current services
 – Define significant investment
 • Trucks
 • Tanks
 • Labor
 • Containment
Biodiesel Feedstock
Virgin Oils

• Winter rapeseed
• Winter canola
• Mustard
• Alternative Oil Seed Crops
 – Sunflower
 – Safflower
 – Soybeans
• Other
Cropland Issues

• 8 or 12 year Crop Rotations
• Harvested acres - 800,000 harvested vs 1.1 million acres planted
• Yield estimate
 – 2200# seed/A (irrigated)
 – 40% oil content
• Oil yield: 105 gal/acre
Oil Seed Production

• Information is lacking on horticultural practices to optimize oil production in the Treasure Valley
• State average yield of canola is 1100 #/acre (54 gal/acre)
• Production under irrigation could be 2-2.5 times higher – 100-125 gallon/acre
• Winter rapeseed and winter canola are reportedly the highest oil yielding crops recommended for Idaho
• Safflower and sunflower are also potential oilseed crops that have been grown successfully in Idaho. Reported yields are 1200 #/acre on dryland to as much as 3000 #/acre under irrigation
Idaho Ag Ruling Pertaining to the Production of Brassica’s

- To control diseases of the Brassica genus particularly blackleg
- to protect genetically developed varieties
- to protect the vegetable seed industry in southwest Idaho
Idaho Ag Ruling Pertaining to the Production of Brassica’s

• Administrative districts within the study area
 – District IV - all land within the boundaries of Ada, Canyon, Gem, Owyhee (north of Murphy), and Payette
 – District V - All lands within the boundaries of Elmore, Owyhee (south of Murphy) and Washington
Idaho Ag Ruling Pertaining to the Production of Brassica’s

• District IV - No rapeseed of either variety may be planted in District VI.

• District V - Only edible types of rapeseed may be planted, exceptions
 – Person planting industrial types can obtain written approval from all farmers bordering the fields to be planted
 – Must be at least one mile from a field planted to edible rapeseed
Oregon Ag Ruling Pertaining to the Production of Brassica’s

• Oregon ag rule pertaining to production of Brassica is under revision. The revision is to address the concept of growing large areas for the production of oil for biodiesel.

• The proposed revisions protect the established seed producing areas which includes the Treasure Valley
Oregon Ag Ruling Pertaining to the Production of Brassica’s

• Seed Producing Areas
 – Prohibits Brassica crops grown for oil production. Keeps the current 3-mile separation distance for canola/rape grown for seed.
 – Allows canola/rape if crop not allowed to flower.

• Non-seed areas:
 – Brassica crops grown for oil allowed
 – no separation between fields
 – no recording requirement
 – Same disease control measures are required
Oregon Ag Ruling Pertaining to the Production of Brassica’s

- Seed Producing Areas: retains current disease control measures including:
 - use of certified seed and testing/treatment for blackleg
 - not be grown in the same field more than one year in four
 - location of canola fields be recorded at the appropriate OSU extension office.
 - Retain transportation security requirements, sealed containers
Oregon Ag Ruling Pertaining to the Production of Brassica’s

- Non-seed areas:
 - Brassica crops grown for oil allowed
 - no separation between fields
 - no recording requirement
 - Same disease control measures are required
Alternative Oil Seed Crops

• Soybeans
 – Commercial varieties not adapted to cool night time temperatures & low humidity in Treasure Valley
 – OSU Malheur Experiment Station developing varieties adapted to the local climate
 • Some have yields -40-60 bu/A
 • Soybeans: oil content -17 to 19%
Alternative Oil Seed Crops

- Sunflower
 - Native North American plant
 - Food for North American Indians before colonization
 - Grown in Treasure Valley
 - Uses row crop equipment
 - Birds reduce yields
 - Heads are difficult to dry
 - Deep rooted plant
Alternative Oil Seed Crops

• Safflower
 – currently raised for birdseed at 12-14 and oil at 8-10 cents per pound, current production in southeastern Idaho 20,000 A, there are fields in Washington county.
 – Responds to hot dry conditions during flowering
 – Yield estimates- 2200 lb/A with 40% oil (Irrigated)
 – Dryland - 40 to 60% of irrigated
 – production 105 gallons per acre
Rotations Suggested for the Treasure Valley

<table>
<thead>
<tr>
<th>Rotation</th>
<th>8 year</th>
<th>12 year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crops*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grain</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>Alfalfa seed (3 yr)</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>Potatoes/sugarbeets</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>Corn</td>
<td>25</td>
<td>0</td>
</tr>
<tr>
<td>Dry beans/ onions</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Mint (4yr)</td>
<td>0</td>
<td>25</td>
</tr>
</tbody>
</table>

* Data is % of crop land available
Greater Treasure Valley Agricultural Area

<table>
<thead>
<tr>
<th></th>
<th>Total Acres</th>
<th>Crop Acres</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ada</td>
<td>675,416</td>
<td>89,540</td>
</tr>
<tr>
<td>Boise</td>
<td>1,217,670</td>
<td>6,956</td>
</tr>
<tr>
<td>Canyon</td>
<td>377,721</td>
<td>235,077</td>
</tr>
<tr>
<td>Elmore</td>
<td>1,970,551</td>
<td>126,529</td>
</tr>
<tr>
<td>Gem</td>
<td>360,435</td>
<td>47,908</td>
</tr>
<tr>
<td>Payette</td>
<td>261,704</td>
<td>57,969</td>
</tr>
<tr>
<td>Owyhee</td>
<td>4,915,493</td>
<td>157,795</td>
</tr>
<tr>
<td>Washington</td>
<td>932,138</td>
<td>107,423</td>
</tr>
<tr>
<td>Malheur County, Oregon</td>
<td>6,329,706</td>
<td>278,780</td>
</tr>
</tbody>
</table>

- Total: 17,040,334 acres, 1,107,977 crop acres
Biodiesel Feedstocks
Rapeseed and/or Canola

Pessimistic
Oilseeds Crop Acreage at 8% - 12 year Rotation

• Total Cropland,
 Harvested acres 809,557
• Acres for oilseeds 64,765*
• Oil production based
 105 gallons per acre 6.8 million gal
 State Average yield 3.5 million gal

*Requires modification of ag order
Biodiesel Feedstocks
Rapeseed and/or Canola

Optimistic
Oilseeds Crop Acreage at 15% - 8 year Rotation

- Cropland, acres 1,107,977
- Cropland available at 15%, acres 166,197*
- Oil production based
 on 105 gallons per acre 17.5 million gal
 State Average Yield 9.0 million gal

*Requires modification of ag order
Feedstock Production Summary
(Millions of Gallons)

<table>
<thead>
<tr>
<th>Feedstock Source</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oil from Crops</td>
<td>1.35 to 17.4</td>
</tr>
<tr>
<td>(25,000 to 166,000 acres at 54 to 105 gallons per acre)</td>
<td></td>
</tr>
<tr>
<td>Oil from Waste Grease</td>
<td>0.3 to 0.5</td>
</tr>
<tr>
<td>(50% of current collection)</td>
<td></td>
</tr>
<tr>
<td>Oil from Processing Plants</td>
<td>0.2</td>
</tr>
<tr>
<td>(50% of estimated 3 million pounds)</td>
<td></td>
</tr>
<tr>
<td>Oil from Tallow</td>
<td>3.7</td>
</tr>
<tr>
<td>(50% of current 56 million pounds)</td>
<td></td>
</tr>
<tr>
<td>Total Estimated Supply</td>
<td>5.5 to 21.8</td>
</tr>
</tbody>
</table>
Biodiesel Market

- Potential customers
 - EPAC
 - State Fleets
 - DOT
 - National guard
 - Federal Fleets
 - Forest service
 - BLM
 - BREC
 - Utilities
 - Idaho Power
 - Intermountain Gas
 - Others
 - Public Transportation
 - Sanitation Companies
 - Boise City
 - Counties
 - School buses
 - Public
Diesel Consumption (gallons)
Data from Idaho Tax Commission

Idaho

246 million On-road

375 million Total
Diesel Consumption

- 38% of the Idaho motor vehicles in the study area
- 42% of the Idaho population in the study area

Based on the above, this study used 40% of the diesel consumption in Idaho in the Treasure Valley and added an equivalent amount per person for Malheur County
Biodiesel Market
(millions of gallons)

<table>
<thead>
<tr>
<th></th>
<th>Treasure Valley</th>
<th>@20%*</th>
<th>@5%*</th>
</tr>
</thead>
<tbody>
<tr>
<td>On-road Diesel</td>
<td>110</td>
<td>22</td>
<td>6</td>
</tr>
<tr>
<td>Total Diesel</td>
<td>166</td>
<td>33</td>
<td>8</td>
</tr>
</tbody>
</table>

*Blend ratio of biodiesel:diesel
Byproduct Utilization
Meal Market

Meal Uses:
- Livestock feed
- Boiler Fuel
- Pesticide
- Disposal problem
Byproduct Utilization

Meal

Safflower meal utilization

<table>
<thead>
<tr>
<th>Biodiesel plant capacity (million gal)</th>
<th>Meal (ton)</th>
<th>Dairy cows required*</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>3,333</td>
<td>3,653</td>
</tr>
<tr>
<td>1</td>
<td>6,667</td>
<td>7,306</td>
</tr>
<tr>
<td>4</td>
<td>26,667</td>
<td>29,224</td>
</tr>
<tr>
<td>12</td>
<td>80,000</td>
<td>87,671</td>
</tr>
<tr>
<td>18</td>
<td>120,000</td>
<td>131,507</td>
</tr>
</tbody>
</table>

* assumes 5 lb. of meal included in ration
Byproduct Utilization

• Calves, Cattle, Cows in study area*

 – 620,000 Southwest
 – 215,000 Malheur County Oregon
 835,000 Total

*2004 Idaho Agricultural Statistics
<table>
<thead>
<tr>
<th>1999-2001 average</th>
<th>Wheat</th>
<th>Barley</th>
<th>Corn</th>
<th>Oats</th>
<th>Other*</th>
<th>Total Grains</th>
<th>Protein Meal*</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>CANADA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beef Cattle</td>
<td>145</td>
<td>3,396</td>
<td>768</td>
<td>1,554</td>
<td>579</td>
<td>6,442</td>
<td>349</td>
<td>6,791</td>
</tr>
<tr>
<td>Dairy Cattle</td>
<td>116</td>
<td>952</td>
<td>1,824</td>
<td>60</td>
<td>344</td>
<td>3,295</td>
<td>471</td>
<td>3,765</td>
</tr>
<tr>
<td>Hogs</td>
<td>818</td>
<td>2,001</td>
<td>3,676</td>
<td>30</td>
<td>304</td>
<td>6,829</td>
<td>1,396</td>
<td>8,225</td>
</tr>
<tr>
<td>Chickens</td>
<td>402</td>
<td>179</td>
<td>836</td>
<td>0</td>
<td>40</td>
<td>1,456</td>
<td>391</td>
<td>1,847</td>
</tr>
<tr>
<td>Layers</td>
<td>274</td>
<td>0</td>
<td>250</td>
<td>0</td>
<td>43</td>
<td>566</td>
<td>133</td>
<td>699</td>
</tr>
<tr>
<td>Turkeys</td>
<td>100</td>
<td>0</td>
<td>131</td>
<td>0</td>
<td>11</td>
<td>243</td>
<td>81</td>
<td>324</td>
</tr>
<tr>
<td>Horses</td>
<td>0</td>
<td>71</td>
<td>22</td>
<td>178</td>
<td>13</td>
<td>285</td>
<td>27</td>
<td>312</td>
</tr>
<tr>
<td>Sheep/Lambs</td>
<td>1</td>
<td>34</td>
<td>7</td>
<td>7</td>
<td>4</td>
<td>53</td>
<td>3</td>
<td>56</td>
</tr>
<tr>
<td>Total</td>
<td>1,857</td>
<td>6,632</td>
<td>7,514</td>
<td>1,829</td>
<td>1,337</td>
<td>19,169</td>
<td>2,851</td>
<td>22,019</td>
</tr>
</tbody>
</table>
Byproduct Utilization

Meal Value

<table>
<thead>
<tr>
<th></th>
<th>Suitable for feed</th>
<th>Protein (%)</th>
<th>Value ($/ton)#</th>
</tr>
</thead>
<tbody>
<tr>
<td>Safflower</td>
<td>yes</td>
<td>25</td>
<td>$120</td>
</tr>
<tr>
<td>Sunflower</td>
<td>yes</td>
<td>50</td>
<td>$239</td>
</tr>
<tr>
<td>yellow mustard</td>
<td>*</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Canola</td>
<td>*</td>
<td>36</td>
<td>$172</td>
</tr>
<tr>
<td>Rapeseed</td>
<td>*</td>
<td>36</td>
<td>$172</td>
</tr>
</tbody>
</table>

*depends on glucosinolate content

#Current price of 47% protein soy meal is $225 per ton
Byproduct Utilization
Glycerine Market

Glycerol Uses:
- Livestock feed
- Boiler Fuel
- Raw material for cosmetics, food, etc.
- Disposal problem

Glycerol Value:
- USP Grade - $0.40 per pound
- Unpurified glycerol may be a disposal problem
Glycerol Production and Use

<table>
<thead>
<tr>
<th></th>
<th>U. S.</th>
<th>Europe</th>
<th>Japan</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annual capacity</td>
<td>169</td>
<td>315</td>
<td>59</td>
<td>543</td>
</tr>
<tr>
<td>Production</td>
<td>159</td>
<td>247</td>
<td>53</td>
<td>459</td>
</tr>
<tr>
<td>Consumption</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Personal/oral care products</td>
<td>75</td>
<td>46</td>
<td>15.5</td>
<td>136.5</td>
</tr>
<tr>
<td>Drugs/Pharmaceuticals</td>
<td>14</td>
<td>24</td>
<td>23</td>
<td>61</td>
</tr>
<tr>
<td>Foods/beverages</td>
<td>42</td>
<td>27</td>
<td></td>
<td>69</td>
</tr>
<tr>
<td>Polyether polyols</td>
<td>17</td>
<td>33</td>
<td>6</td>
<td>56</td>
</tr>
<tr>
<td>Tobacco</td>
<td>22</td>
<td>15</td>
<td>5</td>
<td>42</td>
</tr>
<tr>
<td>Alkyd resins</td>
<td>6</td>
<td>17</td>
<td>7.5</td>
<td>30.5</td>
</tr>
<tr>
<td>Other</td>
<td>13</td>
<td>79</td>
<td>29</td>
<td>121</td>
</tr>
</tbody>
</table>

Table 5 – Production, Consumption, and Uses of Glycerol, 2001 (in thousands of tonnes; source: Chemical Economics Handbook)
Byproduct Utilization

Glycerin

Glycerin as a ration component

<table>
<thead>
<tr>
<th>Biodiesel plant capacity (million gal)</th>
<th>Glycerin (million lb)</th>
<th>Dairy cows required*</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>0.37</td>
<td>1,027</td>
</tr>
<tr>
<td>1</td>
<td>0.75</td>
<td>2,055</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>8,219</td>
</tr>
<tr>
<td>12</td>
<td>9</td>
<td>24,658</td>
</tr>
<tr>
<td>18</td>
<td>13.5</td>
<td>36,986</td>
</tr>
</tbody>
</table>

*Assumes 1# per day

Traces of methanol not acceptable
<table>
<thead>
<tr>
<th></th>
<th>Yellow Grease Only 0.5</th>
<th>YG + Tallow 4</th>
<th>64,765 Acres @ 2200 #/acre 11</th>
<th>157,500 Acres @ 2200 #/acre 21</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feedstock</td>
<td>$375</td>
<td>$3,725</td>
<td>$17,500</td>
<td>$37,300</td>
</tr>
<tr>
<td>Methanol</td>
<td>$56</td>
<td>$450</td>
<td>$1,236</td>
<td>$2,360</td>
</tr>
<tr>
<td>Catalyst</td>
<td>$36</td>
<td>$292</td>
<td>$802</td>
<td>$1,530</td>
</tr>
<tr>
<td>FFA</td>
<td>$50</td>
<td>$400</td>
<td>$400</td>
<td>$400</td>
</tr>
<tr>
<td>Freight</td>
<td>$25</td>
<td>$200</td>
<td>$550</td>
<td>$1050</td>
</tr>
<tr>
<td>Crushing</td>
<td>---</td>
<td>---</td>
<td>$1,425</td>
<td>$3,465</td>
</tr>
<tr>
<td>Total Cost</td>
<td>$693</td>
<td>$6067</td>
<td>$26,500</td>
<td>$55,500</td>
</tr>
<tr>
<td>Cost - $/gal</td>
<td>$1.39</td>
<td>$1.52</td>
<td>$2.41</td>
<td>$2.64</td>
</tr>
<tr>
<td>Plant Size (Million Gallons Per Year) vs. Income in Thousands of $</td>
<td>Yellow Grease Only 0.5</td>
<td>YG + Tallow 4</td>
<td>64,765 Acres @ 2200#/acre 11</td>
<td>157,500 Acres @ 2200#/acre 21</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Biodiesel</td>
<td>$1,100</td>
<td>$8,800</td>
<td>$24,180</td>
<td>$46,200</td>
</tr>
<tr>
<td>Glycerol</td>
<td>$28</td>
<td>$220</td>
<td>$604</td>
<td>$1,155</td>
</tr>
<tr>
<td>Meal</td>
<td>0</td>
<td>0</td>
<td>$5,628</td>
<td>$13,700</td>
</tr>
<tr>
<td>Total</td>
<td>$1127</td>
<td>$9,020</td>
<td>$30,400</td>
<td>$61,045</td>
</tr>
<tr>
<td>Income, $/gal</td>
<td>$2.26</td>
<td>$2.26</td>
<td>$2.77</td>
<td>$2.91</td>
</tr>
<tr>
<td>Profit, $/gal**</td>
<td>$0.87</td>
<td>$0.74</td>
<td>$0.35</td>
<td>$0.26</td>
</tr>
</tbody>
</table>

** No program incentives considered and fob plant
Summary: Plant Size (Million Gallons Per Year) vs. Cost, Income and Profit

<table>
<thead>
<tr>
<th></th>
<th>Yellow Grease Only 0.5</th>
<th>YG + Tallow 4</th>
<th>YG + T + 64,765 Acres @ 2200 #/acre 11</th>
<th>YG + T + 157,500 Acres @ 2200 #/acre 21</th>
</tr>
</thead>
<tbody>
<tr>
<td>Income, $/gal</td>
<td>$2.26</td>
<td>$2.26</td>
<td>$2.77</td>
<td>$2.91</td>
</tr>
<tr>
<td>Cost - $/gal</td>
<td>$1.39</td>
<td>$1.52</td>
<td>$2.41</td>
<td>$2.64</td>
</tr>
<tr>
<td>Profit, $/gal**</td>
<td>$0.87</td>
<td>$0.74</td>
<td>$0.35</td>
<td>$0.26</td>
</tr>
</tbody>
</table>

** No program incentives considered and fob plant
Plant Size Assumptions*

<table>
<thead>
<tr>
<th>Item</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oilseeds</td>
<td>$0.097 cents/pound</td>
</tr>
<tr>
<td>Methanol</td>
<td>$0.104 per gallon</td>
</tr>
<tr>
<td>Catalyst</td>
<td>$0.073 per gallon</td>
</tr>
<tr>
<td>High FFA Processing</td>
<td>$0.06 per gallon</td>
</tr>
<tr>
<td>Freight</td>
<td>$0.05 per gallon</td>
</tr>
<tr>
<td>Crushing and Filtering</td>
<td>$50.00 per ton</td>
</tr>
<tr>
<td>Cost of Plant Operation</td>
<td>$0.20 per gallon up to $0.30 per gallon for the smaller plant</td>
</tr>
</tbody>
</table>

*Reference: Building a Successful Biodiesel Business

Actual numbers for a particular plant may vary from data used.
Plant Size Assumptions* (cont’d)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Biodiesel Selling Price</td>
<td>$2.20 per gallon</td>
</tr>
<tr>
<td>Glycerol value</td>
<td>$0.05 per pound</td>
</tr>
<tr>
<td>Meal Value</td>
<td>$125.00 per ton</td>
</tr>
</tbody>
</table>

*Reference: Building a Successful Biodiesel Business
Actual numbers for a particular plant may vary from data used.
Plant Site Location

- Location will be size dependent
- Small plants will have more potential locations
- Large plants will be constrained by transportation vectors
- Large plants will need oil seed crushing capability (not in scope of study)
Processing Plant
Requirements

Utilities

– Electricity
– Water
– Natural gas
– Waste water treatment
– Storm water run off
Processing Plant Capital Costs

<table>
<thead>
<tr>
<th>Annual Production (Million Gal)</th>
<th>Capital Cost $/gal</th>
</tr>
</thead>
<tbody>
<tr>
<td>.5</td>
<td>2.00</td>
</tr>
<tr>
<td>1.0</td>
<td>2.00</td>
</tr>
<tr>
<td>5.0</td>
<td>1.25</td>
</tr>
<tr>
<td>10.0</td>
<td>1.00</td>
</tr>
</tbody>
</table>
Plant Site Location

Idaho Northern & Pacific Rail line
Plant Site Location

Union Pacific Main rail line
Processing Plant Requirements

• Zoning requirements
 – Biorefinery (processing)-Industrial M1,M2
 – Individuals- Conditional use permit

• Counties
 – Limited industrial zones
 – Application for rezoning
Processing Plant Requirements

• Permits (Various permits depending on business size and location)*
 – Resource Conservation Recovery Act (RCRA)
 – Comprehensive Environmental Response Compensation and Liability Act (CERCA)
 – Emergency Planning and Community Right to Know Act (EPCRA)
 – Clean Water Act
 • Safe Drinking Water Act
 – Toxic Substances Control Act (TSCA)
 – Clean Air Act (CAA)
 – Oil Pollution Control Act

* Reference: Building a Successful Biodiesel Business, 2005
Project Summary

• Potential for a Biodiesel Plant in Treasure Valley
• Potential Biodiesel demand- 6 to 33 million gal
• Sufficient cattle for meal utilization
• Variety of feedstocks:
 • Used oil
 • Tallow
 • Oil seed crops
Potential Biodiesel production: 0.5 to 21 million gal
New market for oil seed crops in Treasure Valley
Project Summary: Constraints

- Ag order limits brassica production
- Previous history with used oil for Biodiesel
- Horticultural information for growing oil seed crops in study area
- No oil seed crush plant
- Limited uses for glycerol
- Market acceptance by major oil companies
- Permitting
Sponsors

• Idaho Department of Water Resources Energy Division

• University of Idaho
 – College of Engineering
 – Department of Biological and Agricultural Engineering
 – NIATT
Questions

The End