Note.

If two floating point numbers with \(n \) significant digits are subtracted, then the result may have fewer than \(n \) significant digits. This is called loss of precision or loss of significant digits due to cancellation of digits.

\[
\text{Ex}
\]

\[
x = \underline{0.1234}, \quad y = \underline{0.1233}
\]

0.1234 - 0.1233 = 0.0001 = (0.1000)_{10} \cdot 10^{-3}

the result has at most one correct significant digit
Ex (pg. 45) quadratic formula

\[ax^2 + bx + c = 0 \]

\[x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \]

0.2 \(x^2 - 47.91x + 6 = 0 \)

\(a = 0.2, \ b = -47.91, \ c = 6 \)

\[\Rightarrow x_1 = 239.4247, \ x_2 = 0.1253: \text{ computed by Matlab} \]

Now suppose we use 4 digit arithmetic.

\[x = \frac{47.91 \pm \sqrt{47.91^2 - 4(0.2)6}}{2(0.2)} \]

\[= \frac{47.91 \pm \sqrt{2290}}{0.4} = \frac{47.91 \pm 47.85}{0.4} \]

\[\Rightarrow x_1 = \frac{47.91 + 47.85}{0.4} = \frac{95.76}{0.4} = 239.4: \text{ all 4 digits are correct} \]
The problem is due to cancellation of digits since

The remedy is to use a higher precision arithmetic

we subtract two close numbers: 47.91 and 47.85.

Now:

\[x = \frac{A - B}{2a} \]

\[= \frac{A^2 - B^2}{2a(B^2 - Yac)} \]

\[= \frac{2b + \sqrt{b^2 - 4ac}}{2c} \]

\[= \frac{2b + \sqrt{b^2 - 4ac}}{2c} \]

\[= 0.1253 \]

Now, all the digits are correct!
Note: \(n = 4 \)

\[
x = \pm (0. \, d_1 \, d_2 \, d_3 \, d_4)_{10} \cdot 10^e, \quad -M \leq e \leq M
\]

\[
x = 0.000\,125\,3700 \neq 0.000\,1
\]

\[
\text{round correct} \quad f(1)(x) = 0.1254 \cdot 10^{-3}
\]

Other methods to eliminate cancellation of digits:
- Taylor expansion
- Trigonometric identities
- Properties of \(\ln, \exp \) etc.

Ex: Finite difference approximation of a derivative

Recall

\[
f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}
\]
Forward Difference

\[f'(x) \approx \frac{f(x+h) - f(x)}{h} \]

\[D_+ f(x) \]

Question: How large is the error?

Taylor series of } f(x) \text{ about } x = a.

\[f(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \frac{f'''(a)}{3!}(x-a)^3 + \ldots \]

Equivalent form,

\[x \rightarrow x + h \]

\[a \rightarrow x \]

\[\Rightarrow f(x+h) = f(x) + f'(x)h + \frac{f''(x)}{2!}h^2 + \frac{f'''(x)}{3!}h^3 + \ldots \]
\[f'(x) = \frac{f(x+h) - f(x)}{h} - \frac{h}{2!} f''(x) - \ldots \]

Hence, the error is proportional to \(h \). We can write this as

\[f'(x) = D_t f(x) + O(h) \]

\[O(h) \approx C \cdot h \quad \text{or} \]

\[|f'(x) - D_t f(x)| \leq C \cdot h \]

where symbol \(O(h) \) means "of order of \(h \)."

For example, if \(f(x) = e^x \), \(x = 1 \)

\[f'(x) = e^x, \quad f'(1) = e^1 = 2.71828\ldots : \text{exact value} \]
<table>
<thead>
<tr>
<th>(h)</th>
<th>(D^h \psi)</th>
<th>(\psi'(x) - D^h \psi)</th>
<th>(\frac{\psi'(x) - D^h \psi}{h})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>2.8588</td>
<td>-0.1406</td>
<td>-1.4056</td>
</tr>
<tr>
<td>0.05</td>
<td>2.7874</td>
<td>-0.0691</td>
<td>-1.3821</td>
</tr>
<tr>
<td>0.025</td>
<td>2.7525</td>
<td>-0.0343</td>
<td>-1.3705</td>
</tr>
<tr>
<td>0.0125</td>
<td>2.7353</td>
<td>-0.0171</td>
<td>-1.3648</td>
</tr>
</tbody>
</table>

\[
\frac{e}{2} = -\frac{1}{2} \psi''(x)
\]
3. For \(h > 10^{-10} \), the error increases as \(h \) is reduced, due to finite precision arithmetic.

2. For \(h < 10^{-10} \), the error is linearly proportional to \(h \).

1. For \(h < 10^{-10} \), the error decreases as \(h \) is reduced, due to the discrete approximation.

\[
\frac{1}{2} f - f^+ A
\]

\[
\frac{2}{3} / 1 = \eta
\]

i.e.,

\[
\text{error log error desired}
\]

\[
\text{error log error vs. log error}
\]

\[
\text{plot log(error)}^{-1}(\eta)
\]

end

end

\[
\text{dip}(\eta)
\]

if \(\text{error} \neq 0 \)
end

for \(j = 1 \) to \(n \)
\[
\text{for } i = 1 \text{ to } n
\]
end