1

\[0.001235 = 0.124 \times 10^{-2} \]

\[0.000005671 = 0.567 \times 10^{-5} \]

\[0.123 \times 10^{-2} \]

\[0.416 \times 10^{-2} \]

\[0.123 \times 10^{-2} + 0.416 \times 10^{-2} = (0.123 + 0.416) \times 10^{-2} \]

\[= 0.539 \times 10^{-2} \]

\[0.123 \times 10^{-2} + 0.459 \times 10^{-1} = 0.0123 \times 10^{-1} + 0.459 \times 10^{-1} = 0.471 \times 10^{-1} \]

Add mantissas, round to 3 digits

\[
\begin{array}{c}
+0.0123 \\
0.459 \\
\hline
0.4713 \approx 0.471
\end{array}
\]

3

(a) composition of \(D_+ \) and \(D_- \)

(b) use Taylor Thm for \(f(x+h) \), \(f(x-h) \). Combine expansions and solve for \(f''(x) \).
\[|x - x_{n+1}| \leq C |x - x_n|^r\]

- \(r\): order of convergence
- \(C\): asymptotic constant

Note
1. \(|x - x_n| \leq K |x - x_{n-1}|\): linear convergence
2. \(K \sim |g'(x)|\): we want to choose the iteration function \(g(x)\) in such a way that \(|g'(x)|\) is as small as possible

Recall
\[f(x) = x^2 - 3, \quad \alpha = \sqrt{3}\]
\[g_1(x) = x - \frac{x^2 - 3}{2}, \quad g_1'(x) = 1 - \frac{2x}{2} = 1 - x\]
\[|g_1'(x)| = |g_1' (\sqrt{3})| = 1 - \sqrt{3} = 0.73 < 1\]

\[g_2(x) = \frac{3}{x}, \quad g_2'(x) = -\frac{3}{x^2}\]
\[|g_2' (\sqrt{3})| = \frac{3}{(\sqrt{3})^2} = 1\]
How do we determine the order of convergence numerically?

\[\{ x_n \} \to \alpha \text{ with order } r \text{ if} \]

\[|d - x_n| \leq C |\alpha - x_{n-1}|^r \]

error at iteration \(n \)

error at iteration \(n-1 \)

Denote \(E_n = |d - x_n| \): abs. error at iteration \(n \).

\[\Rightarrow E_n \leq C E_{n-1}^r \quad \text{or} \quad E_n \approx C E_{n-1}^r \]

\[\ln E_n \approx \ln (C E_{n-1}^r) \]

\[\ln E_n \approx \ln C + r \ln E_{n-1} \]

Assume that \(C \approx 1 \Rightarrow \ln C \approx 0 \)

\[\Rightarrow \ln E_n \approx r \ln E_{n-1} \Rightarrow \]

\[r \approx \frac{\ln E_n}{\ln E_{n-1}} \]
In practice, exact value x may not be known.
Can we still use this result to find order r of convergence?

Yes, if we note that

$$x - x_n \approx x_{n+1} - x_n \quad \Rightarrow \quad \frac{\ln |x_{n+1} - x_n|}{\ln |x_n - x_{n-1}|} \approx r$$

Newton's Method (S2.4)

$$f(x) = 0$$

Idea: expand $f(x_{n+1})$ around the point $x = x_n$.

$$f(x_{n+1}) = f(x_n) + f'(x_n)(x_{n+1} - x_n) + \ldots$$

$$x_n + (x_{n+1} - x_n) \quad \Rightarrow \quad 0 = f(x_n) + f'(x_n)(x_{n+1} - x_n).$$

Then solve for x_{n+1}:

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}, \text{ given } x_0$$
Slope \quad f'(x_n) = \frac{f(x_n) - 0}{x_n - x_{n+1}} \Rightarrow \text{solve for } x_n \text{ as above}

\text{Ex. } \quad f(x) = x^2 - 3

\quad x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}

\quad f'(x) = 2x

\quad \Rightarrow x_{n+1} = x_n - \frac{x_n^2 - 3}{2x_n}

\Rightarrow \text{iteration function } g(x) = x - \frac{f(x)}{f'(x)}
<table>
<thead>
<tr>
<th>n</th>
<th>x_n</th>
<th>f(x_n)</th>
<th></th>
<th>d - x_n</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.5</td>
<td>-0.75</td>
<td></td>
<td>0.232051</td>
</tr>
<tr>
<td>1</td>
<td>1.75</td>
<td>0.0625</td>
<td></td>
<td>0.017949</td>
</tr>
<tr>
<td>2</td>
<td>1.7321429</td>
<td>0.000319</td>
<td></td>
<td>0.000092</td>
</tr>
<tr>
<td>3</td>
<td>1.7320509</td>
<td>0.000001</td>
<td></td>
<td>0.000001</td>
</tr>
</tbody>
</table>

Note

1. \(x_{n+1} = g(x_n) \) where \(g(x) = x - \frac{f(x)}{f'(x)} \)

\(\frac{df}{dx} = f(x) = 0 \), \(f'(x) \neq 0 \) (\(x \) is a simple root of \(f \))

\[g'(x) = 0, \quad g''(x) \neq 0 \]

\[g(x) = x - \frac{f(x)}{f'(x)} \Rightarrow g'(x) = 1 - \frac{1}{[f'(x)]^2} \left[f'(x) \cdot f''(x) - f''(x) \cdot f(x) \right] = \]

\[\frac{\left(f'(x) \right)^2 - \left(\left(f'(x) \right)^2 - f(x) f''(x) \right) \left(f'(x) \right)^2}{\left(f'(x) \right)^2} = \frac{f(x) f''(x)}{\left(f'(x) \right)^2} \]
$$g'(x) = \frac{f(x^0)f''(x)}{(f'(x))^2} = 0$$

One can show that \(g''(x) = \frac{f''(x)}{f'(x)} \neq 0 \)

2. It can be shown if \(x \) is a simple root of \(f(x) \), then
\[|x - x_0| \leq C |x - x_{n-1}|^2 : \quad \text{2nd order of convergence} \]

If \(x \) is a multiple root with multiplicity \(m \geq 2 \), then
\[|x - x_n| \leq C |x - x_{n-1}| : \quad \text{1st order of convergence} \]

3. Newton’s method is more expensive than bisection, fixed-point (in general) since we have two function evaluations \((f(x_n), f'(x_n)) \) per iteration.
The Convergence of Newton's Method

Suppose function \(f \in C^2[a, b] \) (i.e., \(f \) has continuous second derivative) and assume that \(f \) has a simple root \(\lambda \in (a, b) \), i.e., \(f(\lambda) = 0 \), \(f'(\lambda) \neq 0 \). Then Newton's Method converges to \(\lambda \) if \(x_0 \) is chosen sufficiently close to \(\lambda \).