1. **(Richardson Extrapolation Applied to Differentiation).**

 (a) Suppose that \(N(h) \) is an approximation to \(M \) for every \(h > 0 \) and that

 \[M = N(h) + K_1 h^1 + K_2 h^2 + K_3 h^3 + \ldots \]

 for some constants \(K_1, K_2, K_3 \). Use the values \(N(h) \), \(N(h^3) \), and \(N(h^9) \) to produce an \(O(h^3) \) approximation to \(M \).

 (b) Recall that

 \[\frac{df(x_0)}{dx} = \frac{f(x_0 + h) - f(x_0)}{h} + \sum_{i=2}^{\infty} \frac{h^{i-1}}{i!} f^{(i)}(x_0). \]

 Use the formula you constructed in part (a) to construct an \(O(h^3) \) approximation to \(\frac{df(x_0)}{dx} \).

2. **(Richardson Extrapolation Applied to Solving IVPs).** Perform one step of Richardson’s extrapolation to get an improved solution at \(x = 1 \), using values obtained with \(h = 0.1 \) and \(h = 0.05 \) by the second order Runge-Kutta method (Improved Euler method). Compare with exact solution.