#3) \(y' + (\tan t)y = \sin t \quad y(\pi) = 0 \)

\(g(t) = \sin t \) is continuous everywhere

\(p(t) = \tan t \)

\(\tan t \) is \underline{NOT} \ cont. at \(k\pi/2 \quad k = \pm 1, \pm 3, \pm 5, \ldots \)

so the largest interval containing \(t_0 = \pi \) such that both \(p \) and \(g \) are continuous is

\(\left(\frac{\pi}{2}, \frac{3\pi}{2} \right) \)