15) \(y'' - 2y' + y = te^t + 4 \)
\(y(0) = 1, \ y'(0) = 1 \)

1. \(y'' - 2y' + y = 0 \)
\(r^2 - 2r + 1 = 0 \)
\((r-1)^2 = 0 \)
\(r = 1, 1 \)

\(y_1(t) = e^t, \ y_2(t) = te^t \)

2. \(y'' - 2y' + y = te^t \)

Try \(y = (At + B)e^t \)

Note: \(\beta e^t \) is not a solution to the homogeneous equation, but \(\beta e^t \) is not a solution to the non-homogeneous equation.

\(y = \beta e^t \) is not a solution to the non-homogeneous equation.

Try \(y = t(At + B)e^t \)

Note: \(\beta e^t \) is not a solution to the homogeneous equation, but \(\beta e^t \) is not a solution to the non-homogeneous equation.

\(y = (At + B)e^t \)

\(y = At e^t + Bte^t \)

\(y = At e^t + 3Ate^t + Bte^t + 2Bte^t \)

\(y = At e^t + 3Ate^t + 3Ate^t + 6Ate^t + Bte^t + 2Bte^t + 2Bte^t \)

\(y = At e^t + (6A + B)t e^t + 6Ate^t + 4Bte^t + 2Bte^t \)

\(y = At e^t - 6Ate^t - 2Bte^t - 4Bte^t + At e^t + 3Bte^t + 4Bte^t \)

\(y = t e^t \)

\(\omega = 1 \)

\(A = \frac{1}{\omega} \)

\(B = \beta \)

\(Y = \frac{2}{\omega} \left(\frac{1}{\omega} + t \right) e^t \)
(3) \(y'' - 2y' + y = 4 \)
\[A = y, \quad y = 0, \quad y'' = 0 \]
\[A = 4 \]

General solution:
\[y = C_1 e^t + C_2 te^t + \frac{1}{6} t e^t + 4 \]
\[y' = C_1 e^t + C_2 e^t + C_2 e^t + \frac{1}{6} e^t + \frac{1}{2} e^t \]

\(y(0) = 1 \); \(1 = C_1 + 4 \) \[C_1 = -3 \]

\(y'(0) = 1 \); \(1 = C_1 + C_2 \) \[C_2 = 4 \]

So:
\[y = -3e^t + 4te^t + \frac{1}{6} t e^t + 4 \]