7. Minerals III

Mineral Families

O and Si make up ______% of all atoms available to make minerals in the Earth's crust.

Minerals in which cations combine with O^{2-} anions are called ________________.

If Si gets added, O and Si combine to form the ________________ anion: $(SiO_4)^{4-}$. Minerals containing this anion are called ________________.

The most abundant family of minerals is the ________________.

The second most abundant are the ________________.

Minerals that are not silicates are called ________________

Types of non-silicates:

<table>
<thead>
<tr>
<th>Anion Present</th>
</tr>
</thead>
<tbody>
<tr>
<td>________</td>
</tr>
<tr>
<td>none e.g., ____________</td>
</tr>
</tbody>
</table>

99% of all rocks in the crust are made up of ________________, ________________, ________________, and ________________ (a total of about 30 minerals).

These 30 or so minerals are called the **rock-forming minerals** because they are the main components of most common rock types.

75% of the Earth's crust is made up of two types of silicate minerals:

______________ and ________________

Less common types of minerals in rocks are called ________________ minerals.

Silicates

What does a silica anion look like? ________________

__

What is meant by the word tetrahedron? ________________
Why do silica tetrahedra have a charge of negative-4: \((\text{SiO}_4)^{-4}\)?

How do silica tetrahedra get rid of the negative charges? ______________________

What mineral is pure silica?
(Clue: its chemical formula is \(\text{SiO}_2\)) ______________________

By sharing oxygen atoms in the crystal lattice (rather than just sharing electrons), silica anions can form several types of atomic arrangements:

• independent tetrahedra (no sharing) (e.g. ________________)
• single chains (e.g. ________________)
• double chains (e.g. ________________)
• sheets (e.g. ________________ and ________________)
• 3D framework (e.g. ________________ and ________________)

Each of these patterns results in different types of silicate minerals.

Cations fill in gaps between the silica tetrahedra. Five common cations that bond with silica tetrahedra are:

_________ ___________ ___________ ___________ ______

The exact silicate mineral that forms depends on the arrangement of the silica tetrahedra and the types of cations that bond with them.

Ferromagnesian Silicates

These are the silicate minerals that contain _____________ and _____________.

Typical dark colors of ferromagnesian silicates:

___________ , _____________ , _____________ , _____________

Examples of ferromagnesian silicates:

___________ , _____________ , _____________ , _____________ , _____________

Nonferromagnesian Silicates

Typical color of nonferromagnesian silicates: _____________________________
Examples of nonferromagnesian silicates:

________________ , ____________ , ___________________

The two types of feldspar are in the feldspar group of minerals are:

__________________ (contains the element _________)

And

___________________ (contains the elements _______ and _______)

Non-silicates

Oxides

Any mineral that contains O atoms but no Si are called oxides.

Examples of oxides: _____________________ and ____________________

Carbonates

Minerals containing the carbonate anion (CO\(_3\))\(^2-\) are carbonates.

Examples of carbonates: _____________________ and ____________________

How can you tell the difference between the above two carbonate minerals?

__

Sulfides and Sulfates

What are sulfides? __

Examples of sulfides: ______________ and ______________

What are sulfates? __

Example of a sulfate: ______________

Native Elements

Some minerals are comprised of only a single type of element arranged into a complex 3D crystal lattice. These are called native elements.
Examples: _____________, _______________, ______________, ______________

What are polymorphs of an element?

Where do Minerals Come From?

There are many ways that minerals can form in the Earth's crust:

• Cooling of magma or lava: ___
• Hydrothermal: ___
• Evaporation: ___
• Alteration: __

Naming Minerals

Minerals may be named in a number of ways:

• after their discoverers (famous mineralogists or people with inflated egos)
• after the locality where they were discovered (e.g. vesuvianite from Mt. Vesuvius)
• after their physical properties (e.g. magnetite is magnetic)
• after their chemistry (e.g. fluorite contains F; chromite contains Cr)

Uses of Minerals

How many tons of minerals does each of us use every year? _____________

Uses:

• ____________: glass, optical instruments, sandpaper, steel alloys
• ____________: drywall
• ____________: ceramics, paper
• ____________: porcelain, ceramics, enamel, glass
• ________________: catalytic converters, chemotherapy, jewelry

Economic Classification of Minerals

Economic minerals are classified as either mineral resources or mineral reserves.

Mineral _____________: the actual amount of a mineral that exists in rocks.

How does the amount change through time? _________________________________
Mineral ______________: the amount of the mineral that can be economically extracted.

How does the amount change through time? ____________________________

FINAL QUESTION:

Which is greatest in amount: mineral reserve or mineral resource?
