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1. Introduction

P4:= projective fourspace over C.

Theorem (-, Ranestad, 2004).

There exist five different families of smooth rational

surface in P4 with degree 12 and sectional genus 13.

Remark.
These surfaces are all isomorphic to P2 blown up in
21 points.
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Linear systems

The embedding linear systems of these surfaces are

of the following types:

(i) (12; 41, 312, 20, 18)

(ii) (12; 42, 39, 23, 17)

(iii) (12; 43, 36, 26, 16)

(iv) (12; 44, 33, 29, 15)

(v) (12; 45, 30, 212, 14)
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A theorem of Severi

X := smooth surface in Pn.

Sec(X) := secant variety to X in Pn.

Theorem (Severi, 1901).

X := smooth nondegenerate surface in P5. Then:

Sec(X) 6= P5 ⇔ X is the Veronese surface.
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Double point formula

• X:= smooth surface in P4.

• H:= its hyperplane class.

• K:= its canonical divisor.

• d := H2 = deg(X).

• π:=1
2H.(H + K) + 1= its sectional genus.

• χ:= Euler-Poincaré characteristic.

d2 − 10d− 5H.K − 12K2 + 12χ = 0.
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Finiteness result of Ellingsrud and Peskine

Theorem (Ellingsrud, Peskine, 1989).

∃ d0 ∈ N such that for every smooth surface

X ⊂ P4 of degree d the following holds:

d > d0 ⇒ X is of general type.

Remark.
The theorem implies that there are only a finite
number of families of nongeneral-type surfaces
in P4.
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Goal.

Classify the smooth nongeneral type surfaces in P4.

Problem 1.

Find the true d0.

Problem 2.

Classify the smooth surfaces in P4 of small degree.
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Known families of smooth nongeneral-type surfaces

in P4 (∼1995) can be found in

W. Decker and S.Popescu: On surfaces in P4 and 3-folds in P5, London Math. Soc.

Lecture Note Ser., 208, (1995), 69–100

List of nongeneral-type surfaces found after 1996

d rational ruled Enriques elliptic

8 0 1 [ADS] 0 0

11 3 [S] +1 [BEL] 0 1 [S] 0

12 5 [AR2, AS] +1 0 0 1 [AR1]
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Remarks.

• The classification of the smooth nongeneral type

surfaces has been completed up to degree 10.

• A partial classification in degree 11 has been

given (Sorin Popescu, 1993).
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Construction

Take the following steps:

Step 1. Prove (or disprove) the existence of a

smooth surface in P4 with given invariants such as

degree and sectional genus.

Step 2. Determine where the surface stands in the
Enriques classification table (use Adjunction
theory).
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Construction methods.

• Linear systems on abstract surfaces.

• Liaison.

• Eagon-Northcott complex method (Decker, Ein

and Schreyer).
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Adjunction theory

Neglecting some well-known exceptions, we have

Theorem (Sommese, Van de Ven, 1987).

The adjoint linear system |H + K| defines a

birational morphism

Φ|H+K| : X → Pπ−pa−1

onto a smooth surface X1, which blows down

precisely all (−1)-curves on X.
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The Eagon-Northcott complex method

E := vector bundle on P4 with rank(E) = r.

F := vector bundle on P4 with rank(F) = r + 1.

ϕ:= morphism from E to F such that

X :=
{

p ∈ P4
∣∣ rank(ϕ) < r

}
has codimension 2, then X is locally

Cohen-Macaulay.

Conversely, every locally Cohen-Macaulay
subscheme of codimension 2 in P4 arises in this way.
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Beilinson’s theorem

Theorem (Beilinson, 1978).

For any sheaf F on Pn, there is a complex K· with

Ki =
⊕

H i−j(Pn,F ⊗OPn(j))⊗ Ω−j(−j)

such that

H i(K·) =

F if i = 0,

0 otherwise.

Definition.

We call K· a Beilinson monad for F .
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2. Construction of rational surfaces in P4

V := 4-dimensional vector with basis {ei}0≤i≤4.

W := its dual with dual basis {xi}0≤i≤4

X := smooth surface in P4 = P(W ) with

d = 12, π = 13 and pg = q = 0.

IX := ideal sheaf of X.

Beilinson’s theorem tells us that IX(4) is obtained

via

0 → 4Ω3(3)
A−→ 2Ω2(2)⊕ 2Ω1(1)

B−→ 3OP4 → 0.
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Let A =

 A1

A2

 and B =
(

B2 B1

)
.

For fixed A1 and B1, the matrix equation

B ◦ A = B2 ◦ A1 + B1 ◦ A2 = 0

gives rise to a homogeneous system of 120 linear

equations with 140 unknowns.

F := coefficient matrix of the system of linear
equations.
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rank(F ) Existence Linear System

120 × −

119 ? ?

118 ? ?

117 © (12; 45, 30, 212, 14)

116 © (12; 44, 33, 29, 15)

115 © (12; 43, 36, 26, 16)

114 © (12; 42, 39, 23, 17)

113 © (12; 41, 312, 20, 18)
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How to find A1 and B1

Fix a “general” B1 ∈ Hom(2Ω1(1), 3O). For

example,

B1 =


e0 e1

e1 e2

e3 e4

 .

SB:= locus in P(V ), where

B1 : H1(P4, IX(3)) → H1(P4, IX(4))

is not injective.
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For an A1 ∈ Hom(4Ω3(3), 2Ω2(2)),

CA:= locus in P(V ), where

A1 : H2(P4, IX(1)) → H2(P4, IX(2))

is not surjective.

For a given N ∈ {113, . . . , 117}, find an A1 such

that

(a) CA is a rational normal curve in P(V ).

(b) rank(F ) = N .

JAH 20



F:= family of rational normal curves in P(V ).

∪
FN := subfamily of rational normal curves in P(V )

satisfying (b).

c := codim(F, FN).

Fp:= finite field with p elements.

Performing a random search, we can expect to find

a point of FN(Fp) from F(Fp) at a late of (1 : pc).

Question. Is codim(F, FN) = (120−N)2 ?
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VA:= column space of A1.

VB:= row space of B1.

Every column of A1 and every row of B1 have rank

2, so they define elements in G(2, V ) ⊂ P(
∧2 V ).

The corresponding maps of P(VA) and P(VB) into

G(2, V ) are the double embeddings.

ZA:= image of P(VA) → Veronese 3-fold.

ZB:= image of P(VB) → Veronese surface.
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Lemma 1.

The intersection of ZA and ZB consists of at most 6

points.

Lemma 2.

If ZA and ZB intersect at k points, then

rank(F ) ≤ 120− k.

Corollary. codim(F, FN) ≤ 120−N .
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Lift to characteristic zero

Lemma (Schreyer, 1996).

Let A1 ∈ Hom(4Ω3(3), 2Ω2(2)) satisfying (a) and

(b). If FN has codimension 120−N at the point x

corresponding to A1. Then:

∃ a number field L and ∃ a prime p in L

such that the residue field OL,p/pOL,p is in Fp.

Furthermore, if X/Fp corresponding to x is smooth,
then X/L corresponding to the generic point of
Spec(L) ⊆ Spec(OL,p) is also smooth.
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For a given A1 ∈ Hom(4Ω3(3), 2Ω2(2)), each family

has dimension 38.

(∗) 38 ≥ (140−N − 20)− 1 + 18 + dim(FN),

where

18 = dim. of the family of rational cubic scrolls;

140−N = dimension of the solution space and

20 = dimension of the “trivial” solution space.
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From (*) it follows that dim(FN) = N − 99. So we

have

codim(F, FN) ≥ 21− (N − 99)

= 120−N,

where 21 = dimension of the family of rational

normal curves. By Corollary,

codim(F, FN) = 120−N.
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Problems

Problem 1.

Does there exist a smooth rational surface of degree

13?

Problem 2.
Find a geometric construction of each family.
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