Construction of Rational Surfaces in Projective Fourspace

(joint work with Kristian Ranestad)

Hirotachi Abo

Department of Mathematics
Colorado State University

abo@math.colostate.edu $http://www.math.colostate.edu/{\sim}abo$

August 2005

1. Introduction

 \mathbb{P}^4 := projective fourspace over \mathbb{C} .

Theorem (-, Ranestad, 2004).

There exist five different families of smooth rational surface in \mathbb{P}^4 with degree 12 and sectional genus 13.

Remark.

These surfaces are all isomorphic to \mathbb{P}^2 blown up in 21 points.

Linear systems

The embedding linear systems of these surfaces are of the following types:

(i)
$$(12; 4^1, 3^{12}, 2^0, 1^8)$$

(ii)
$$(12; 4^2, 3^9, 2^3, 1^7)$$

(iii)
$$(12; 4^3, 3^6, 2^6, 1^6)$$

(iv)
$$(12; 4^4, 3^3, 2^9, 1^5)$$

(v)
$$(12; 4^5, 3^0, 2^{12}, 1^4)$$

A theorem of Severi

 $X := \text{smooth surface in } \mathbb{P}^n$.

 $Sec(X) := secant variety to X in <math>\mathbb{P}^n$.

Theorem (Severi, 1901).

 $X := \text{smooth nondegenerate surface in } \mathbb{P}^5$. Then:

 $\operatorname{Sec}(X) \neq \mathbb{P}^5 \Leftrightarrow X$ is the Veronese surface.

Double point formula

- $X := \text{smooth surface in } \mathbb{P}^4$.
- H := its hyperplane class.
- K := its canonical divisor.
- $\bullet \ d := H^2 = \deg(X).$
- $\pi := \frac{1}{2}H.(H+K) + 1 = \text{its sectional genus.}$
- χ := Euler-Poincaré characteristic.

$$d^2 - 10d - 5H.K - 12K^2 + 12\chi = 0.$$

Finiteness result of Ellingsrud and Peskine

Theorem (Ellingsrud, Peskine, 1989).

 $\exists d_0 \in \mathbb{N}$ such that for every smooth surface $X \subset \mathbb{P}^4$ of degree d the following holds:

$$d > d_0 \Rightarrow X$$
 is of general type.

Remark.

The theorem implies that there are only a finite number of families of nongeneral-type surfaces in \mathbb{P}^4 .

Goal.

Classify the smooth nongeneral type surfaces in \mathbb{P}^4 .

Problem 1.

Find the true d_0 .

Problem 2.

Classify the smooth surfaces in \mathbb{P}^4 of small degree.

Known families of smooth nongeneral-type surfaces in \mathbb{P}^4 (~1995) can be found in

W. Decker and S.Popescu: On surfaces in \mathbb{P}^4 and 3-folds in \mathbb{P}^5 , London Math. Soc.

Lecture Note Ser., **208**, (1995), 69–100

List of nongeneral-type surfaces found after 1996

d	rational	ruled	Enriques	elliptic
8	0	1 [ADS]	0	0
11	3 [S] +1 [BEL]	0	1 [S]	0
12	5 [AR2, AS] +1	0	0	1 [AR1]

References

- [ADS] H. Abo, W. Decker, N. Sasakura: An elliptic conic bundle in \mathbb{P}^4 arising from a stable rank-3 vector bundle, Math. Z. **229** (1998), 725–741.
- [AR1] H. Abo, K. Ranestad: Irregular elliptic surfaces of degree 12 in projective fourspace, Math. Nachr. 278 (2005), 511–524.
- [AR2] H. Abo, K. Ranestad: Construction of rational surfaces in projective fourspace, preprint.
- [AS] H. Abo, F.-O. Schreyer, Exterior algebra methods for the construction of rational surface in \mathbb{P}^4 , preprint.
- [BEL] H.-C. Bothmer, C. Erdenberger, K. Ludwig; A new family of rational surfaces in \mathbb{P}^4 , available at from arXiv server as math.AG/0404492
- [S] F.-O. Schreyer, Small fields in vonstructive algebraic geometry, Lecture Notes in Pure and Appl. Math., 179 (1994) 221–228.

Remarks.

- The classification of the smooth nongeneral type surfaces has been completed up to degree 10.
- A partial classification in degree 11 has been given (Sorin Popescu, 1993).

Construction

Take the following steps:

Step 1. Prove (or disprove) the existence of a smooth surface in \mathbb{P}^4 with given invariants such as degree and sectional genus.

Step 2. Determine where the surface stands in the Enriques classification table (use **Adjunction** theory).

Construction methods.

- Linear systems on abstract surfaces.
- Liaison.
- Eagon-Northcott complex method (Decker, Ein and Schreyer).

Adjunction theory

Neglecting some well-known exceptions, we have

Theorem (Sommese, Van de Ven, 1987).

The adjoint linear system |H + K| defines a birational morphism

$$\Phi_{|H+K|}: X \to \mathbb{P}^{\pi-p_a-1}$$

onto a smooth surface X_1 , which blows down precisely all (-1)-curves on X.

The Eagon-Northcott complex method

 \mathcal{E} := vector bundle on \mathbb{P}^4 with rank $(\mathcal{E}) = r$.

 \mathcal{F} := vector bundle on \mathbb{P}^4 with rank $(\mathcal{F}) = r + 1$.

 $\varphi := \text{morphism from } \mathcal{E} \text{ to } \mathcal{F} \text{ such that}$

$$X := \left\{ p \in \mathbb{P}^4 \mid \operatorname{rank}(\varphi) < r \right\}$$

has codimension 2, then X is locally Cohen-Macaulay.

Conversely, every locally Cohen-Macaulay subscheme of codimension 2 in \mathbb{P}^4 arises in this way.

Beilinson's theorem

Theorem (Beilinson, 1978).

For any sheaf \mathcal{F} on \mathbb{P}^n , there is a complex \mathcal{K} with

$$\mathcal{K}^i = \bigoplus H^{i-j}(\mathbb{P}^n, \mathcal{F} \otimes \mathcal{O}_{\mathbb{P}^n}(j)) \otimes \Omega^{-j}(-j)$$

such that

$$H^{i}(\mathcal{K}^{\cdot}) = \begin{cases} \mathcal{F} & \text{if } i = 0, \\ 0 & \text{otherwise.} \end{cases}$$

Definition.

We call \mathcal{K} a **Beilinson monad** for \mathcal{F} .

2. Construction of rational surfaces in \mathbb{P}^4

V:= 4-dimensional vector with basis $\{e_i\}_{0\leq i\leq 4}$.

W:= its dual with dual basis $\{x_i\}_{0\leq i\leq 4}$

 $X := \text{smooth surface in } \mathbb{P}^4 = \mathbb{P}(W) \text{ with }$

$$d = 12$$
, $\pi = 13$ and $p_g = q = 0$.

 $\mathcal{I}_X := ideal \text{ sheaf of } X.$

Beilinson's theorem tells us that $\mathcal{I}_X(4)$ is obtained via

$$0 \to 4\Omega^3(3) \xrightarrow{A} 2\Omega^2(2) \oplus 2\Omega^1(1) \xrightarrow{B} 3\mathcal{O}_{\mathbb{P}^4} \to 0.$$

Let
$$A = \begin{pmatrix} A_1 \\ A_2 \end{pmatrix}$$
 and $B = \begin{pmatrix} B_2 & B_1 \end{pmatrix}$.

For fixed A_1 and B_1 , the matrix equation

$$B \circ A = B_2 \circ A_1 + B_1 \circ A_2 = 0$$

gives rise to a homogeneous system of 120 linear equations with 140 unknowns.

F:= coefficient matrix of the system of linear equations.

$\operatorname{rank}(F)$	Existence	Linear System
120	×	
119	?	?
118	?	?
117		$(12; 4^5, 3^0, 2^{12}, 1^4)$
116		$(12; 4^4, 3^3, 2^9, 1^5)$
115		$(12; 4^3, 3^6, 2^6, 1^6)$
114		$(12; 4^2, 3^9, 2^3, 1^7)$
113		$(12; 4^1, 3^{12}, 2^0, 1^8)$

How to find A_1 and B_1

Fix a "general" $B_1 \in \text{Hom}(2\Omega^1(1), 3\mathcal{O})$. For example,

$$B_1 = \begin{pmatrix} e_0 & e_1 \\ e_1 & e_2 \\ e_3 & e_4 \end{pmatrix}.$$

 $S_B := \text{locus in } \mathbb{P}(V), \text{ where }$

$$B_1: \mathrm{H}^1(\mathbb{P}^4, \mathcal{I}_X(3)) \to \mathrm{H}^1(\mathbb{P}^4, \mathcal{I}_X(4))$$

is not injective.

For an $A_1 \in \text{Hom}(4\Omega^3(3), 2\Omega^2(2)),$

 $C_A := \text{locus in } \mathbb{P}(V), \text{ where }$

$$A_1: \mathrm{H}^2(\mathbb{P}^4, \mathcal{I}_X(1)) \to \mathrm{H}^2(\mathbb{P}^4, \mathcal{I}_X(2))$$

is not surjective.

For a given $N \in \{113, ..., 117\}$, find an A_1 such that

- (a) C_A is a rational normal curve in $\mathbb{P}(V)$.
- (b) rank(F) = N.

 $\mathfrak{F}:=$ family of rational normal curves in $\mathbb{P}(V)$.

 \mathfrak{F}_N := subfamily of rational normal curves in $\mathbb{P}(V)$ satisfying (b).

 $c := \operatorname{codim}(\mathfrak{F}, \mathfrak{F}_N).$

 \mathbb{F}_p := finite field with p elements.

Performing a random search, we can expect to find a point of $\mathfrak{F}_N(\mathbb{F}_p)$ from $\mathfrak{F}(\mathbb{F}_p)$ at a late of $(1:p^c)$.

Question. Is $\operatorname{codim}(\mathfrak{F},\mathfrak{F}_N) = (120 - N)^2$?

 $V_A := \text{column space of } A_1.$

 $V_B := \text{row space of } B_1.$

Every column of A_1 and every row of B_1 have rank 2, so they define elements in $G(2, V) \subset \mathbb{P}(\bigwedge^2 V)$.

The corresponding maps of $\mathbb{P}(V_A)$ and $\mathbb{P}(V_B)$ into G(2, V) are the double embeddings.

 Z_A := image of $\mathbb{P}(V_A) \to \text{Veronese 3-fold.}$

 $Z_B := \text{image of } \mathbb{P}(V_B) \to \text{Veronese surface.}$

Lemma 1.

The intersection of Z_A and Z_B consists of at most 6 points.

Lemma 2.

If Z_A and Z_B intersect at k points, then

$$rank(F) \le 120 - k.$$

Corollary. $\operatorname{codim}(\mathfrak{F},\mathfrak{F}_N) \leq 120 - N$.

Lift to characteristic zero Lemma (Schreyer, 1996).

Let $A_1 \in \text{Hom}(4\Omega^3(3), 2\Omega^2(2))$ satisfying (a) and (b). If \mathfrak{F}_N has codimension 120 - N at the point x corresponding to A_1 . Then:

 \exists a number field \mathbb{L} and \exists a prime \mathfrak{p} in \mathbb{L} such that the residue field $\mathcal{O}_{\mathbb{L},\mathfrak{p}}/\mathfrak{p}\mathcal{O}_{\mathbb{L},\mathfrak{p}}$ is in \mathbb{F}_p . Furthermore, if X/\mathbb{F}_p corresponding to x is smooth, then X/\mathbb{L} corresponding to the generic point of $\operatorname{Spec}(\mathbb{L}) \subseteq \operatorname{Spec}(\mathcal{O}_{\mathbb{L},\mathfrak{p}})$ is also smooth. For a given $A_1 \in \text{Hom}(4\Omega^3(3), 2\Omega^2(2))$, each family has dimension 38.

(*)
$$38 \ge (140 - N - 20) - 1 + 18 + \dim(\mathfrak{F}_N),$$

where

 $18 = \dim$ of the family of rational cubic scrolls;

140 - N = dimension of the solution space and

20 = dimension of the "trivial" solution space.

From (*) it follows that $\dim(\mathfrak{F}_N) = N - 99$. So we have

$$\operatorname{codim}(\mathfrak{F}, \mathfrak{F}_N) \geq 21 - (N - 99)$$
$$= 120 - N,$$

where 21 = dimension of the family of rational normal curves. By Corollary,

$$\operatorname{codim}(\mathfrak{F},\mathfrak{F}_N) = 120 - N.$$

Problems

Problem 1.

Does there exist a smooth rational surface of degree 13?

Problem 2.

Find a geometric construction of each family.