
Problem Set 2

Problem 1. a) Let I = (x2 − 1) be an ideal in R[x]. Is I maximal? Why or why
not?

b) Let I = (x2 + 1) be an ideal in R[x]. Is I maximal? Why or why not?
c) Let I = (x2 + 1) be an ideal in C[x]. Is I maximal? Why or why not?

Problem 2. a) Let I be an ideal in a ring R. Suppose fn ∈ I and gm ∈ I. Show
that (f + g)n+m ∈ I.

b) Let J = {f ∈ R|f t ∈ I for some t > 0}. Show that J is an ideal.

Remark 3. The ideal J de�ned in the problem above is a radical ideal and is the
smallest radical ideal which contains I. Hence J = rad(I). Many books de�ne
the radical in this way i.e. they de�ne rad(I) = {f ∈ R|f t ∈ I for some t >
0}. It is equivalent to the de�nition given in the handout entitled "Some Useful
De�nitions and Facts from Commutative Algebra". It is interesting to note that it
was only fairly recently (1992) that an algorithm was published giving a symbolic
computation of the radical of an ideal.

Problem 4. Let I = (x2, xy) be an ideal.
a) Show that rad(I) = (x).
b) Show that I is not primary.
c) Write I as the intersection of two primary ideals.

Problem 5. Let I = (x2 − 1, y2 − 4) ⊂ R[x, y]. Write I as the intersection of 4
maximal ideals.

Problem 6. Let I = (x2, xy2, y3). Find the dimension of C[x, y]/I as a vector
space over C and produce a basis for this vector space.

Problem 7. Let I = (y2 − x2, y2 + x2). Find the dimension of C[x, y]/I as a
vector space over C and produce a basis for this vector space.

Problem 8. Let k be any �eld and let F ∈ k[x] be a polynomial of degree 5. Find
a basis for k[x]/(F ) as a vector space over k.

Problem 9. In de�nition 19 and 20 of the handout "Some Useful De�nitions
and Facts from Commutative Algebra", you can �nd the terms: Module Finite
and Ring Finite. Let R be a ring and let S = R[x].

a) Is S module �nite over R?
b) IS S ring �nite over R?

Problem 10. Suppose R and S are rings. Show that if S is module �nite over
R then S is ring �nite over R.
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The following problem is from the book Ideals, Varieties, and Algorithms by
Cox, Little and O'Shea.

Problem 11. In engineering, it is an important problem to be able to build up a
complicated curve or surface (such as the outside of a car) out of simple pieces
(because simple pieces are easier to construct). To make the pieces �t together in a
smooth manner, it is required that the pieces look very similar, locally, at the points
of intersection. For curves, this means that they have the same tangent lines at
the points of intersection (sometimes the sharing of higher order tangents may
also be required). Bézier cubic curves provide a simple model that accomplishes
this feat. Given 4 points in the plane (x0, y0), . . . (x3, y3), a Bézier cubic curve
is a cubic curve that starts at (x0, y0) with tangent line passing through (x1, y1)
and ends at (x3, y3) with tangent line passing through (x2, y2). The Bézier cubic
is produced by letting t vary from 0 to 1 in the expression

x = (1− t)3x0 + 3t(1− t)2x1 + 3t2(1− t)x2 + t3x3

y = (1− t)3y0 + 3t(1− t)2y1 + 3t2(1− t)y2 + t3y3.

a) Show that (x0, y0) (resp. (x3, y3)) lie on the curve at times t = 0 (resp.
t = 1).

b) Show that the tangent line to the curve at time t = 0 (resp. t = 1) passes
through the points (x1, y1) (resp. (x2, y2)).

Remark 12. It can also be shown that the Bézier curve stays inside the convex
hull of the four points (x0, y0), . . . (x3, y3).

The next few problems are from Fulton's book on "Algebraic Curves".

Problem 13. Let k be ANY �eld. Recall that k[x] is a UFD. Recall that a
polynomial F ∈ k[x] is irreducible if it cannot be factored as F = GH with the
degree of G and H both positive.

a) Prove that there are an in�nite number of irreducible polynomials in k[x].
(Hint: Think of Euclid's proof that there are an in�nite number of primes).

b) Use this fact to show that if k is an algebraically closed �eld then k has an
in�nite number of elements. (Hint: What are the irreducible polynomials in k[x]
if k is algebraically closed?).

Problem 14. Let k be a �eld. Let F ∈ k[x1, x2, . . . , xn]. Let a1, a2, . . . , an be
elements from k.

a) Show that F can be written as a k-linear combination of elements of the
form (x1− a1)

m1(x2− a2)
m2 . . . (xn − an)mn (each mi ≥ 0) by giving an algorithm

for writing F in this manner. If you prefer lots of notation, this problem is asking
you to show that F can be written as

F =
∑

(i1,i2,...,in)≥(0,0,...,0)

C(i1,i2,...,in)(x1−a1)
i1(x2−a2)

i2 . . . (xn−an)in with C(i1,i2,...,in) ∈ k.

b) Suppose F (a1, a2, . . . , an) = 0, then show that F =
∑n

i=1(xi − ai)Gi for
some G1, G2, . . . , Gn ∈ k[x1, x2, . . . , xn].
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