
Problem Set 3

Problem 1. a) Let I = (x4 − 1) ⊆ R[x]. Find I(V (I)).
b) Let I = (x5 − 1) ⊆ R[x]. Find I(V (I)).
c) Let I = (xn − 1) ⊆ R[x]. Find I(V (I)).

Problem 2. Give an example of 2 ideals I and J in C[x, y] such that I 6= J but
V (I) = V (J).

Problem 3. Show that the closed a�ne varieties in A1
k are the �nite subsets of

A1
k and all of A1

k.

I thank George Raptis for posing the following question:

Problem 4. Show that if k is a �nite �eld, then EVERY subset of An
k is a closed

a�ne variety. (Hence we can conclude that the Zariski topology on An
k is the

same as the discrete topology on An
k !)

These next few problems are from Fulton's "Algebraic Curves":

Problem 5. Let k be a �eld and let I be an ideal with I ⊆ k[x1, x2, . . . , xn].
a) Show that V (I) = V (rad(I)).
b) Show that rad(I) ⊆ I(V (I)).

Problem 6. Let V, W be closed a�ne varieties. Show that V = W if and only
if I(V ) = I(W ).

Problem 7. a) Let V be a closed algebraic variety in An and let P be a point in
An which is not in V . Show that there exists a polynomial F ∈ k[x1, x2, . . . , xn]
such that F (Q) = 0 for every point in V but F (P ) = 1.

b) Let {P1, P2, . . . , Pn} be a �nite set of points in An. Show that there exist
polynomials {F1, F2, . . . , Fn} ∈ k[x1, x2, . . . , xn] such that Fi(Pj) = 0 whenever
i 6= j but Fi(Pi) = 1.

c) Let V be a closed algebraic variety in An and let P1, P2 be two points in
An which are not in V . Show that there is a polynomial F ∈ I(V ) such that
F (P1) 6= 0 and F (P2) 6= 0.
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The problems on this page will encourage you to start the process of learning
Macaulay II (or some other equivalent Computer Algebra system).

We will soon learn the following theorem:

Theorem 8. (Weak Nullstellensatz) Let k be an algebraically closed �eld. If
I ⊆ k[x1, x2, . . . , xn] is a proper ideal then V (I) 6= ∅.

Let F, G ∈ C[x]. If F and G do not share a common root then V ((F, G)) = ∅.
As a consequence of the Weak Nullstellensatz, this implies that (F, G) is not a
proper ideal. In other words (F, G) = (1). This implies that 1 ∈ (F, G). The
following general question is very natural:

Question 9. If I is an ideal in k[x1, x2, . . . , xn] and if P ∈ k[x1, x2, . . . , xn], how
can we determine if P ∈ I?

Grobner bases will give a method for answering this question. The computer
algebra system "Macaulay II" has various Grobner basis algorithms incorporated
into its commands. In fact, the ideal membership question is a command built
into Macaulay II. With this in mind, you have two possible methods for answering
the following problem, either the method of resultants with the polynomials F and
G or testing whether 1 ∈ (F, G). With either method, Macaulay II will make
your work easier and I suggest you use it. Hiro will be available to help answer
questions on getting started with Macaulay II.

Problem 10. Let F = x5 + 4x3 + 6x2 + x + 2 and let G = 4x3 + 7x2 + 2x + 1.
Do F and G share a root?

Let V = {P1, P2, . . . , Pt} ⊆ An be a �nite collection of points. There are
two basic methods to determine I(V ) ⊆ k[x1, x2, . . . , xn]. The �rst method uses
linear algebra and involves building up I(V ) step by step. We will go over this
method but, unfortunately, it is di�cult to determine when you have completed
the process. I.e. it is di�cult to determine when you have a set of elements which
generate I(V ). A second method is to determine I(Pi) for each Pi ∈ V and then
compute J = I(P1)∩ I(P2)∩ · · · ∩ I(Pt). Since J is precisely the set of functions
which vanish at P1 and P2 and . . . and Pt, we can conclude that J = I(V ). This
brings up the following natural question:

Question 11. Given two ideals I and J , can you compute the ideal I ∩ J?

Grobner bases again let you solve this problem. Macaulay II has a built in
function that allows you to compute the intersection of 2 ideals. You should use
Macaulay II to help you solve the following problem:

Problem 12. Let P1 = (1, 2, 3), P2 = (1, 3, 7), P3 = (2, 3, 5). Let V = {P1, P2, P3}.
Find I(V ).
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