Problem Set 4

Let V' be a closed affine variety in A} and let W be a closed affine variety in
A}". The product of V and W will be defined as

VxW={(a,...,an,b1,....0n)|(a1,...,a,) €V and (by,...,b,) € W}.

Problem 1. Let V' be a closed affine variety in A} and let W be a closed affine
variety in AT, Show that V- x W is a close affine variety in A},

Problem 2. Consider the closed affine variety V(Y? — X) C AZ. Show that
V(Y? — X) is irreducible. (Hint: Show that I(V(Y? — X)) is prime).

Problem 3. Let [ = (Y4 — X2, V% — X2V? + XY? — X3) C C[X,Y].
a) Decompose V(1) into three irreducible components.
b) Use the decomposition to construct I(V(I)). (Hint: Macaulay 2 can help).

Problem 4. Let [ = (22 +y?> — 1,22 — 22 — 1) C Clz, y, 2]. Decompose V (I) into
2 irreducible components.

Problem 5. Let X = {(0,0)} € AZ.
a) Find a single polynomial F € Rx,y| such that X = V(F).
b) Is I(X) = (F)?

Problem 6. Let I} = (z+ 1,y +1),Is = (z,y — 2), I3 = (x —y) be three ideals in
Rlz,y]. Let Vi =V (1), Vo =V (I3), Vs = V(I3). It is easy to check that Vi, Vs, V3
are each irreducible. Let V =V U Vo U V. Show that there exists an F € R|x, y]
such that V =V (F).

The previous 2 problems illustrate that unusual behavior can occur when work-
ing over a field which is not algebraically closed. One can extend the idea of the
solution of problem 6 to show that any closed affine variety in A% is V(F) for
some element F € Rx,y]. This is definitely not true if we work in A3 when k
s algebraically closed. For most of the course, we will work over an algebraically
closed field and this will simplify things considerably.

Problem 7. Let J, = (), Jo = (z%,y), J3 = (2%, zy,y?). It can be shown that
J1, Jo, J3 are all primary ideals. Compute Iy = J; N Jy and I = J, N Js.



Definition 8. An ideal, I, is said to be irreducible if it cannot be written as
I = J, N Jy with Jy, Jo ideals satisfying I # Jy, I # Js.

Lemma 9. In a Noetherian ring, irreducible ideals are primary.

Recall that a closed affine variety, V, is irreducible if it cannot be written as
V = ViuVy with Vi, Vs closed affine varieties satisfying V # Vi,V # V,. Problem
7 demonstrates that it is possible to have I reducible but V(1) irreducible. In
general, if k is an algebraically closed field and if I C k[zy,z9, ..., x,], we have

a) I reducible =~ V(I) reducible (or V(I) irreducible =~ I irreducible).
b) I irreducible = V' (I) irreducible (or V(I) reducible = I reducible).
¢) V(I) irreducible <= I(V(I)) irreducible.

What causes the problem in a) is the possibility of "embedded primes" (embed-
ded primes are defined in the handout "Some Useful Definitions and Facts from
Commutative Algebra”). If an ideal is a radical ideal, then it will not have any
embedded primes. Any ideal can be written as the intersection of primary ideals.
A radical ideal can be written as the intersection of prime ideals. In fact, an ideal
1s a radical ideal if and only if it can be written as the intersection of prime ideals.

Definition 10. Let R be a ring and let I, J be ideals in R. The ideal quotient
of I by J is defined as I : J ={f € R|fJ C I}.

Problem 11. o) Show that I : J is an ideal.
b) Let '€ R. Show that (INJ): F=({I:F)n(J:F).

Problem 12. Compute the following ideal quotients (each ideal is in k[x,y]).

The saturation of I with respect to J s written I : J*° and is defined as
I:J%® = Up I 2 J'. By the Noetherian property, I : J*° =1 : JN for N
sufficiently large. An alternate way to compute I : J® is to define Iy = I : J and
define 151 = 1;: J. This produces a sequence of ideals, Iy C Iy C ..., which will
stabilize at some point (i.e. for N sufficiently large, Iy = In11 = Iyi2=....)

Problem 13. Show that I : J&* C 1 :J¢ for any d.

Problem 14. Compute the following:
o) (@ 2%) -
b) (x,y)% : 2>



