Problem Set 4

The following problem is meant to illustrate the idea in the proof of Hilbert's Nullstellensatz.

Problem 1. Let k be an algebraically closed field. Let $I = (A^2, B^2) \subseteq k[A, B]$. It is clear that $AB \in I(V(I))$ but that $AB \notin I$. By Hilbert's Nullstellensatz, some power of AB is in I (it is clear, in fact, that $(AB)^2 \in I$ but let's approach this in the spirit of the proof of the Nullstellensatz). Let $I' = (A^2, B^2, 1 - (AB)Y) \subseteq$ k[A, B][Y]. Then V(I') = 0 so $1 \in I'$.

- a) Find $F, G, H \in k[A, B][Y]$ such that $1 = FA^2 + GB^2 + H(1 (AB)Y)$.
- b) Plug $Y = \frac{1}{AB}$ into the expression $1 = FA^2 + GB^2 + H(1 (AB)Y)$.
- c) Clear denominators and write $(AB)^n$ as an element of I for some n.

For the next problem, let $R = k[x_1, x_2, ..., x_n]$ and let I be an ideal in R which is generated by monomials. The problem is meant to convince you that, with some work, you can systematically compute $dim_k(R/I)$.

Problem 2. a) Find $\dim_k(k[x, y]/(x^4, x^2y^3, y^4))$.

- b) Find $\dim_k(k[x, y, z]/(x^4, x^2y^3, y^4, xyz, z^2))$.
- c) For a given I, what is a quick way to determine if $\dim_k(R/I) < \infty$?
- d) Explain how to determine $\dim_k(R/I)$ (when it is finite).

Problem 3. a) Find $dim_k(k[x, y]/(x^2 - 1, y^2 - 4))$.

b) Find a basis for $k[x,y]/(x^2-1,y^2-4)$ as a vector space over k.

Problem 4. Let $F = \sum_{i=0}^{n} a_i x^i$ and let $G = \sum_{i=0}^{m} b_i y^i$. Find $\dim_k(k[x, y]/(F, G))$.

Problem 5. Let k be an algebraically closed field. Show that each of the following are irreducible in k[x, y].

a) $F = y^2 - xy^2 - x^2 - x^3$. b) $G = y^3 - y^2 + x^3 - x^2 + 3xy^2 + 3x^2y + 2xy$. c) $H = y^2 - x(x-1)(x-\lambda)$ for any $\lambda \in k$.