Problem Set 4

The following problem is meant to illustrate the idea in the proof of Hilbert's Nullstellensatz.

Problem 1. Let k be an algebraically closed field. Let $I=\left(A^{2}, B^{2}\right) \subseteq k[A, B]$. It is clear that $A B \in I(V(I))$ but that $A B \notin I$. By Hilbert's Nullstellensatz, some power of $A B$ is in I (it is clear, in fact, that $(A B)^{2} \in I$ but let's approach this in the spirit of the proof of the Nullstellensatz). Let $I^{\prime}=\left(A^{2}, B^{2}, 1-(A B) Y\right) \subseteq$ $k[A, B][Y]$. Then $V\left(I^{\prime}\right)=0$ so $1 \in I^{\prime}$.
a) Find $F, G, H \in k[A, B][Y]$ such that $1=F A^{2}+G B^{2}+H(1-(A B) Y)$.
b) Plug $Y=\frac{1}{A B}$ into the expression $1=F A^{2}+G B^{2}+H(1-(A B) Y)$.
c) Clear denominators and write $(A B)^{n}$ as an element of I for some n.

For the next problem, let $R=k\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ and let I be an ideal in R which is generated by monomials. The problem is meant to convince you that, with some work, you can systematically compute $\operatorname{dim}_{k}(R / I)$.

Problem 2. a) Find $\operatorname{dim}_{k}\left(k[x, y] /\left(x^{4}, x^{2} y^{3}, y^{4}\right)\right)$.
b) Find $\operatorname{dim}_{k}\left(k[x, y, z] /\left(x^{4}, x^{2} y^{3}, y^{4}, x y z, z^{2}\right)\right)$.
c) For a given I, what is a quick way to determine if $\operatorname{dim}_{k}(R / I)<\infty$?
d) Explain how to determine $\operatorname{dim}_{k}(R / I)$ (when it is finite).

Problem 3. a) Find $\operatorname{dim}_{k}\left(k[x, y] /\left(x^{2}-1, y^{2}-4\right)\right)$.
b) Find a basis for $k[x, y] /\left(x^{2}-1, y^{2}-4\right)$ as a vector space over k.

Problem 4. Let $F=\sum_{i=0}^{n} a_{i} x^{i}$ and let $G=\sum_{i=0}^{m} b_{i} y^{i}$. Find $\operatorname{dim}_{k}(k[x, y] /(F, G))$.

Problem 5. Let k be an algebraically closed field. Show that each of the following are irreducible in $k[x, y]$.
a) $F=y^{2}-x y^{2}-x^{2}-x^{3}$.
b) $G=y^{3}-y^{2}+x^{3}-x^{2}+3 x y^{2}+3 x^{2} y+2 x y$.
c) $H=y^{2}-x(x-1)(x-\lambda)$ for any $\lambda \in k$.

