Problem Set 6

The picture below lies in $\mathbb{A}_{\mathbb{R}}^{2}$. Each of the 3 line segments in the picture represents a steel bar of length 1 . Let $A=(0,0), B=(0,2), C=\left(x_{1}, y_{1}\right)$ and $D=\left(x_{2}, y_{2}\right)$. Points A and B cannot move but points C and D can move. The steel bars are connected with hinges. Point M is exactly in the middle of the bar. It turns out that as the three bars move into every allowable position, the point M sweeps out a curve. This curve is an irreducible affine variety given as $V(F)$ for some polynomial $F \in \mathbb{R}[X, Y]$. In the problems following the picture, you will compute F using Macaulay 2 and elimination theory.

Problem 1. Give a rough sketch of the curve traced out by M.
Now we will construct an ideal, I, in $\mathbb{R}\left[X, Y, x_{1}, x_{2}, y_{1}, y_{2}\right]$ which represents all allowable configurations and the corresponding positions of M. Each bar yields a constraint on the variables $x_{1}, x_{2}, y_{1}, y_{2}$, this yields 3 quadratic polynomials. Let $M=(X, Y)$ and write down the coordinates of M in terms of $x_{1}, x_{2}, y_{1}, y_{2}$, this yields 2 linear polynomials. Let I be the ideal generated by the three quadratic polynomials and the two linear polynomials.

Problem 2. Write out the equations for I.
We would like to know all of the allowable values of X and Y. This corresponds to computing $J=I \cap \mathbb{R}[X, Y]$. If you carry out this computation in Macaulay 2 you will obtain an ideal with a single generator, F. F is the equation of the curve.

Problem 3. What is F?

The next problem should look familiar. Don't let the problem give you a headache, it really is easy once you understand what it is asking.

Problem 4. Let k be an algebraically closed field. Let $F=y^{n}+a_{n-1}(x) y^{n-1}+$ $a_{n-2}(x) y^{n-2}+\cdots+a_{1}(x) y+a_{0}(x)$ be an irreducible polynomial in $k[x, y]$. Let $V=V(F)$.
a) Show that the natural homomorphism of $k[x]$ to $\Gamma(V)=k[x, y] /(F)$ is injective (so $k[x]$ is a subring of $\Gamma(V)$).
b) Show that the residues $\overline{1}, \bar{y}, \ldots, \overline{y^{n-1}}$ generate $\Gamma(V)$ as a module over $k[x]$.

The next problem is a small review problem:

Problem 5. Let $F(x)=x^{4}+2 x^{3}+3 x^{2}+2 x+2 \in \mathbb{C}[x]$. Given that $i-1$ is a root, find the primary decomposition of F.

A form is a polynomial in which every term has the same total degree (like $\left.x^{2} y z+w^{4}+y^{2} z^{2}+w^{2} x y\right)$.

Problem 6. Show that any factor of a form is a form.

Problem 7. Show that the set of all affine mappings of \mathbb{A}^{2} with the operation of composition form a group, I.e. Show the following
a) There is an identity element.
b) The composition of two affine maps is an affine map.
c) Each affine map has an inverse.
d) The associative property holds.

Problem 8. a) Show that $f=3 x y+x^{3}+y^{3} \in \mathbb{C}[x, y]$ is irreducible.
b) Use part a) to show that $g=x^{3}+y^{3}-3 x^{2}-3 y^{2}+3 x y+1$ is irreducible. (Hint: irreduciblity is preserved under affine mappings.)

Problem 9. a) Let A, B, C be three non collinear points in \mathbb{A}^{2}. Show that there exists a unique affine map which takes $(0,0)$ to $A,(1,0)$ to B and $(0,1)$ to C.
b) Use part a) to show that if A, B, C and D, E, F are sets of non-collinear points, then there is a unique affine map which takes A to D, B to E and C to F.

Problem 10. Let $A_{1}, A_{2}, \ldots A_{n+1}$ and $B_{1}, B_{2}, \ldots B_{n+1}$ be sets of non-cohyperplaner points in \mathbb{A}^{n}. Show that there is a unique affine map which take A_{i} to B_{i}. (You may assume $\operatorname{Af}(n)$ is a group.)

