Problem Set 9

For this entire problem set, $R = k[x_1, x_2, \dots, x_n]$ with k a field.

Problem 1. Define a map $\phi : \mathbb{A}^1 \to \mathbb{A}^4$ by $t \to (t, t^2, t^3, t^4)$. This induces a map $\widetilde{\phi} : k[A, B, C, D] \to k[t]$.

- a) Find $ker(\widetilde{\phi})$.
- b) Compute $J = ker(\widetilde{\phi}) \cap k[A, B, C]$.
- c) How does this compare with the ideal of the twisted cubic?
- d) Compute $I = ker(\widetilde{\phi}) \cap k[B, C]$.
- e) How does this compare with the ideal in Problem 3 on Set 8?
- f) Is $I = J \cap k[B, C]$?

Problem 2. Let $I = (x^2 - y^2, xy - 1)$ be an ideal in k[x, y].

- a) Compute a Gröbner basis for I with respect to the lex order.
- b) Find a reduced Gröbner basis for I with respect to the lex order.
- c) Compute $in_{lex}(I)$.
- d) Compute $dim_k(k[x,y]/I)$.
- e) Compute $I \cap k[y]$.

Problem 3. Let $I = (x^2 - y^2, xy - 1)$ be an ideal in k[x, y].

- a) Compute a Gröbner basis for I with respect to the hlex order.
- b) Find a reduced Gröbner basis for I with respect to the hlex order.
- c) Compute $in_{hlex}(I)$.
- d) Use c) to compute $dim_k(k[x,y]/I)$.

Problem 4. Let $I = (x^2 - y^2, xy - 1)$ be an ideal in k[x, y]. Compute a Gröbner basis for I with respect to the rlex order.

Problem 5. Let $I = (x^4 - y^4, y^7 - 1)$ be an ideal in k[x, y].

- a) Compute a Gröbner basis for I with respect to the hlex order.
- b) Find $dim_k(k[x,y]/I)$.

Problem 6. Let $a, b, c \in \mathbb{Z}^+$ with $a \geq b$. Let $\lambda \in k$. Use hlex order to find $dim_k(k[x,y]/(x^a-y^b,y^c-\lambda))$.

Lemma 7. Let $I = (x^{a_1}, x^{a_2}, \dots, x^{a_t}) \in k[x_1, x_2, \dots x_n]$ be a monomial ideal. Let x^a be a monomial. Then

$$I: x^a = (\frac{x^{a_1}}{GCD(x^{a_1}, x^a)}, \frac{x^{a_2}}{GCD(x^{a_2}, x^a)}, \dots, \frac{x^{a_t}}{GCD(x^{a_t}, x^a)}).$$

Lemma 8. Let $R = k[x_1, x_2, \dots, x_n]$. Let $f \in R$. There is a short exact sequence of the form

$$0 \to R/(I:f) \to R/I \to R/(I,f) \to 0.$$

Recall that in a short exact sequence of vector spaces $0 \to A \to B \to C \to 0$, dim(B) = dim(A) + dim(C).

Problem 9. Compute $\dim_k(k[x,y,z]/(x^3,y^4,z^5,xyz))$ using Lemma 7 and 8.

Problem 10. Let $I = (y - x^2, z - x^3)$ be the ideal of the twisted cubic in k[x, y, z]. Order the degree one monomials by y > x > z. Let $F = y^2z$.

- a) Compute a Gröbner basis for I with respect to lex order (using the given ordering of degree one monomials).
- b) Using the division algorithm, find the remainder upon dividing F by the elements in the Gröbner basis of I.