Problem Set 9

For this entire problem set, $R=k\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ with k a field.

Problem 1. Define a map $\phi: \mathbb{A}^{1} \rightarrow \mathbb{A}^{4}$ by $t \rightarrow\left(t, t^{2}, t^{3}, t^{4}\right)$. This induces a map $\widetilde{\phi}: k[A, B, C, D] \rightarrow k[t]$.
a) Find $\operatorname{ker}(\widetilde{\phi})$.
b) Compute $J=\operatorname{ker}(\widetilde{\phi}) \cap k[A, B, C]$.
c) How does this compare with the ideal of the twisted cubic?
d) Compute $I=\operatorname{ker}(\widetilde{\phi}) \cap k[B, C]$.
e) How does this compare with the ideal in Problem 3 on Set 8?
f) $I s I=J \cap k[B, C]$?

Problem 2. Let $I=\left(x^{2}-y^{2}, x y-1\right)$ be an ideal in $k[x, y]$.
a) Compute a Gröbner basis for I with respect to the lex order.
b) Find a reduced Gröbner basis for I with respect to the lex order.
c) Compute $\mathrm{in}_{\text {lex }}(I)$.
d) Compute $\operatorname{dim}_{k}(k[x, y] / I)$.
e) Compute $I \cap k[y]$.

Problem 3. Let $I=\left(x^{2}-y^{2}, x y-1\right)$ be an ideal in $k[x, y]$.
a) Compute a Gröbner basis for I with respect to the hlex order.
b) Find a reduced Gröbner basis for I with respect to the hlex order.
c) Compute in $_{\text {hlex }}(I)$.
d) Use c) to compute $\operatorname{dim}_{k}(k[x, y] / I)$.

Problem 4. Let $I=\left(x^{2}-y^{2}, x y-1\right)$ be an ideal in $k[x, y]$. Compute a Gröbner basis for I with respect to the rlex order.

Problem 5. Let $I=\left(x^{4}-y^{4}, y^{7}-1\right)$ be an ideal in $k[x, y]$.
a) Compute a Gröbner basis for I with respect to the hlex order.
b) Find $\operatorname{dim}_{k}(k[x, y] / I)$.

Problem 6. Let $a, b, c \in \mathbb{Z}^{+}$with $a \geq b$. Let $\lambda \in k$. Use hlex order to find $\operatorname{dim}_{k}\left(k[x, y] /\left(x^{a}-y^{b}, y^{c}-\lambda\right)\right)$.

Lemma 7. Let $I=\left(x^{a_{1}}, x^{a_{2}}, \ldots, x^{a_{t}}\right) \in k\left[x_{1}, x_{2}, \ldots x_{n}\right]$ be a monomial ideal. Let x^{a} be a monomial. Then

$$
I: x^{a}=\left(\frac{x^{a_{1}}}{G C D\left(x^{a_{1}}, x^{a}\right)}, \frac{x^{a_{2}}}{G C D\left(x^{a_{2}}, x^{a}\right)}, \ldots, \frac{x^{a_{t}}}{G C D\left(x^{a_{t}}, x^{a}\right)}\right) .
$$

Lemma 8. Let $R=k\left[x_{1}, x_{2}, \ldots, x_{n}\right]$. Let $f \in R$. There is a short exact sequence of the form

$$
0 \rightarrow R /(I: f) \rightarrow R / I \rightarrow R /(I, f) \rightarrow 0
$$

Recall that in a short exact sequence of vector spaces $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$, $\operatorname{dim}(B)=\operatorname{dim}(A)+\operatorname{dim}(C)$.

Problem 9. Compute $\operatorname{dim}_{k}\left(k[x, y, z] /\left(x^{3}, y^{4}, z^{5}, x y z\right)\right)$ using Lemma 7 and 8.

Problem 10. Let $I=\left(y-x^{2}, z-x^{3}\right)$ be the ideal of the twisted cubic in $k[x, y, z]$. Order the degree one monomials by $y>x>z$. Let $F=y^{2} z$.
a) Compute a Gröbner basis for I with respect to lex order (using the given ordering of degree one monomials).
b) Using the division algorithm, find the remainder upon dividing F by the elements in the Gröbner basis of I.

